RT Journal Article T1 Assessment of InGaSb crystals by cathodo-luminescence microscopy and spectroscopy A1 Chioncel, M. F. A1 Díaz-Guerra Viejo, Carlos A1 Piqueras de Noriega, Javier A1 Duhanian, N. A1 Duffar, T. AB Low band-gap InGaSb crystals are of interest for the development of thermo-photo-voltaic (TPV) cells and other devices operating in the infrared spectral range. In this work, cathodoluminescence (CL) in the scanning electron microscope (SEM) has been applied to study the homogeneity of InGaSb material grown by the vertical Bridgman technique with regard to effective incorporation of In to the ternary alloy and the nature and distribution of defects influencing the luminescence properties of this semiconductor. Back-scattered electron imaging and wavelength dispersive X-ray mapping were used as complementary techniques to CL for analysis of chemical composition and element distribution. The results show that local CL spectra provide information on the effective formation of the alloy, not revealed by other techniques. PB Natl Inst Optoelectronics SN 1454-4164 YR 2004 FD 2004-03 LK https://hdl.handle.net/20.500.14352/51147 UL https://hdl.handle.net/20.500.14352/51147 NO [1] J. P. Benner, T. J. Couts, D. S. Ginly (eds.) Proc. 2 nd NREL Conf. on Thermophotovoltaic Generation of Electricity, AIP Conf. Proc. 358, (1995). [2] T. J. Couts, C. S. Allma, J. B. Benner (eds.) Proc. 3 rd NREL Conf. on Thermophotovoltaic Generation of Electricity, AIP Conf. Proc. 401, (1997). [3] O. V. Sulima, A. W. Bett, P. S. Dutta, M. G. Mauk, R. L. Mueller, 29 th Photovoltaic Specialists Conference, May 20-24, New Orleans (2002). [4] N. P. Uppal, G. Carache, P. Baldasaro, B. Campbell, S. Loughin, S. Svensson, D. Gill, J. Cryst. Growth 175-176, 877 (1997). [5] M. G. Mauk, V. M. Andreev, Semicond. Sci. Tecnol. 18, S191 (2003). [6] D. Auvergne, J. Camassel, H. Mathieu, A. Joullie, J. Phys. Chem. Sol. 35, 133 (1974). [7] S. Sen, R. A. Lefer, W. R. Wilcox, J. Cryst. Growth 43, 526 (1978). [8] C. Marín, P. S. Dutta, E. Diéguez, P. Dussere, T. Duffar, J. Cryst. Growth 173, 271 (1997). [9] J. F. Yee, M. C. Lin, K. Sarma, W. R. Wilcox, J. Cryst. Growth 30, 185 (1975). [10] T. Duffar, M. D. Serrano, C. D. Moore, J. Camassel, S. Contreras, P. Dussere, A. Rivallant, B. K. Tanner, J. Cryst. Growth 192, 63 (1998). [11] Y. Hayakawa et al. J. Cryst. Growth 213, 40 (2000). [12] N. Duhanian, C. Marín, T. Duffar, J. Abadie, M. Chaudet, E. Diéguez, Microgravity Science and Technology XI/4, 187 (1997). [13] N. Duhanian, Ph. D. Thesis, Université Paris (1998). [14] C. H. Su, Y. K. Su, F. S. Juang, Solid State Electronics 35, 1385 (1992). [15] P. S. Dutta, A. Ostrogorsky, J. Cryst. Growth 217, 360 (2000). [16] P. Hidalgo, B. Méndez, P. S. Dutta, J. Piqueras, E. Diéguez, Phys. Rev. B 57, 6479 (1998). [17] B. G. Yacobi, D. B. Holt, Cathodoluminescence Microscopy of Inorganic Solids, Plenum Press, New York, (1990). [18] G. Benz, R. Conradt, Phys. Rev. B 16, 843 (1977) NO © Natl Inst Optoelectronics.This work was carried out in the frame of the Fifth Framework European Programme for research; HPRN-CT 2001-00199 project. MFC acknowledges European Commission for financial support. NO Fifth Framework European Programme for research NO European Commission DS Docta Complutense RD 28 abr 2024