RT Journal Article T1 Digital Microscopy Augmented by Artificial Intelligence toInterpret Bone Marrow Samples for Hematological Diseases A1 Bermejo Peláez, David A1 Rueda Charro, Sandra A1 García Roa, María A1 Trelles Martínez, Roberto A1 Bobes-Fernández, Alejandro A1 Hidalgo Soto, Marta A1 García-Vicente, Roberto A1 Morales Fernández, María Luz A1 Rodríguez García, Alba A1 Ortiz Ruiz, Alejandra A1 Blanco Sánchez, Alberto A1 Mousa Urbina, Adriana A1 Álamo García-Donas, Elisa A1 Lin, Lin A1 Dacal Picazo, Elena A1 Cuadrado Sánchez, Daniel A1 Postigo Camps, María A1 Vladimirov, Alexander A1 García-Villena, Jaime A1 Santos Torres, Andrés A1 Ledesma-Carbayo, Maria Jesús A1 Ayala Díaz, Rosa María A1 Martínez López, Joaquín A1 Linares Gómez, María A1 Luengo Oroz, Miguel AB Analysis of bone marrow aspirates (BMA) is an essential step in the diagnosis of hematological disorders. This analysis is usually performed based on visual examination of the samples under a conventional optical microscope, which involves a labor-intensive process, limited by clinical experience and subject to high observer variability. In this work, we present a comprehensive digital system that enables BMA analysis for cell type counting and differentiation in an efficient and objective manner. This system not only provides an accessible and simple method to digitize, store and analyze BMA samples remotely, but is also supported by an artificial intelligence (AI) pipeline that accelerates the differential cell counting (DCC) process and reduces inter-observer variability. It has been designed to integrate AI algorithms with the daily clinical routine and can be used in any regular hospital workflow. SN 1431-9276 YR 2022 FD 2022-08-30 LK https://hdl.handle.net/20.500.14352/101540 UL https://hdl.handle.net/20.500.14352/101540 LA eng NO Bermejo-Peláez D, Charro SR, Roa MG, Trelles-Martínez R, Bobes-Fernández A, Soto MH, García-Vicente R, Morales ML, Rodríguez-García A, Ortiz-Ruiz A, Sánchez AB, Urbina AM, Álamo E, Lin L, Dacal E, Cuadrado D, Postigo M, Vladimirov A, Garcia-Villena J, Santos A, Ledesma-Carbayo MJ, Díaz RA, Martínez-López J, Linares M, Luengo-Oroz M. Digital system augmented by artificial intelligence to interpret bone marrow samples for hematological disease diagnosis 2022. https://doi.org/10.1101/2022.08.30.22279373. NO Horizon 2020 NO Agencia Estatal de Investigación (España) NO Ministerio de Ciencia, Innovación y Universidades (España) NO Sociedad Española de Hematología y Hemoterapia NO Comunidad de Madrid DS Docta Complutense RD 4 abr 2025