RT Journal Article T1 Direct evidence for block-by-block growth in high-temperature superconductor ultrathin films A1 Varela del Arco, María A1 Grogger, W. A1 Arias Serna, Diego A1 Sefrioui, Zouhair A1 León Yebra, Carlos A1 Ballesteros, C. A1 Frishnan, K.M. A1 Santamaría Sánchez-Barriga, Jacobo AB Charge neutrality and stoichiometry impose severe restrictions on the mechanisms of epitaxial growth of complex oxides. The fundamental question arises of what is the minimum growth unit when sample thickness is reduced beyond the size of the unit cell. We have investigated the growth mechanism of YBa_(2)Cu_(3)O_(7) cuprate superconductor, using a consistent approach based on the growth of noninteger numbers of YBa_(2)Cu_(3)O_(7) layers in YBa_(2)Cu_(3)O_(7)/PrBa_(2)Cu_(3)O_(7) superlattices. Ex situ chemical and structural analysis evidence a 2D block-by-block mechanism in which the minimum growth units are complete unit cell blocks, growing coherently over large lateral distances. PB American Physical Society SN 0031-9007 YR 2001 FD 2001-05-28 LK https://hdl.handle.net/20.500.14352/59638 UL https://hdl.handle.net/20.500.14352/59638 LA eng NO [1] C. Dekker, P. J. M. Wöltgens, R. H. Koch, B. W. Hussey, A. Gupta, Phys. Rev. Lett., 69, 2717 (1992).[2] T. Terashima, et al., Phys. Rev. Lett., 67, 1362 (1991).[3] I. N. Chan, et al., Phys. Lett. A, 175, 241 (1993).[4] J. Hasen, D. Lederman, I. K. Schuller, Phys. Rev. Lett., 70, 1731 (1993).[5] I. K. Schuller, Nature (London), 394, 419 (1998).[6] E. E. Fullerton, J. Guimpel, O. Nakamura, I. K. Schuller, Phys. Rev. Lett., 69, 2859 (1992).[7] I. Bozovic, J. N. Eckstein, MRS Bull., 20, 32 (1995).[8] J. P. Locquet, A. Catana, E. Mächler, C. Gerber, J. G. Bednorz, Appl. Phys. Lett., 64, 372 (1994).[9] S. J. Pennycook, et al., Phys. Rev. Lett., 67, 765 (1991).[10] C. L. Jia, et al., Physica (Amsterdam), 210C, 1 (1993).[11] T. Haage, et al., Appl. Phys. Lett., 68, 2427 (1996).[12] M. Varela, et al., Phys. Rev. Lett., 83, 3936 (1999).[13] E. E. Fullerton, I. K. Schuller, H. Vanderstraeten, Y. Bruynseraede, Phys. Rev. B, 45, 9292 (1992).[14] O. L. Krivanek, M. K. Kundmann, K. Kimoto, J. Microsc., 180, 277 (1995).[15] F. Hofer, W. Grogger, G. Kothleitner, P. Warbichler, Ultramicroscopy, 67, 83 (1997).[16] T. Navidi-Kasmai, H. Kohl, Ultramicroscopy, 81, 223 (2000).[17] Energy-Filtering Transmission Electron Microscopy, edited by L. Reimer (Springer, New York, 1995).[18] O. L. Krivanek, A. J. Gubbens, M. K. Kundmann, G. C. Carpenter, in Proceedings of the Annual Meeting of the Microscopy Society of America, edited by G. W. Bailey and C. L. Rieder (San Francisco Press, San Francisco, 1993), p. 586.[19] I. K. Schuller, et al., Phys. Rev. Lett., 65, 1235 (1990).[20] J. M. Triscone, O. Fischer, Rep. Prog. Phys., 60, 1673 (1997). NO © 2001 The American Physical Society. M. V. was partially supported by a research grant of the Fundación Universidad Carlos III de Madrid. Financial support from CICYT Grant No. MAT99-1706E is also acknowledged. M. V. is thankful for the hospitality received during her stay at the LBNL/NCEM. W. G. acknowledges support from the Max Kade Foundation for his stay at Berkeley. Work at LBNL/NCEM was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. NO Fundación Universidad Carlos III de Madrid NO CICYT NO Max Kade Foundation NO Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division of the U.S. Department of Energy DS Docta Complutense RD 29 abr 2024