RT Journal Article T1 Complex Ginzburg–Landau equation with generalized finite differences A1 Salete, Eduardo A1 Vargas, A. M. A1 García, Ángel A1 Negreanu, Mihaela A1 Benito, Juan J. A1 Ureña, Francisco AB In this paper we obtain a novel implementation for irregular clouds of nodes of the meshless method called Generalized Finite Difference Method for solving the complex Ginzburg–Landau equation. We derive the explicit formulae for the spatial derivative and an explicit scheme by splitting the equation into a system of two parabolic PDEs. We prove the conditional convergence of the numerical scheme towards the continuous solution under certain assumptions. We obtain a second order approximation as it is clear from the numerical results. Finally, we provide several examples of its application over irregular domains in order to test the accuracy of the explicit scheme, as well as comparison with other numerical methods. PB MDPI SN 2227-7390 YR 2020 FD 2020-12-20 LK https://hdl.handle.net/20.500.14352/7727 UL https://hdl.handle.net/20.500.14352/7727 LA eng NO 1. Shokri, A.; Dehghan, M. A Meshless Method Using Radial Basis Functions for the Numerical Solution ofTwo-Dimensional Complex Ginzburg-Landau Equation. CMES Comput. Model. Eng. Sci. 2012, 84, 333–358.2. Wang, B. Existence of Time Periodic Solutions for the Ginzburg-Landau Equations of Superconductivity.J. Math. Anal. Appl. 1999, 232, 394–412.3. Du, Q.; Gunburger, M.D.; Peterson, J.S. Modeling and Analysis of a Periodic Ginzburg–Landau Model forType-II Superconductors. SIAM J. Appl. Math. 1992, 53, 689–717. 4. Wang, T.; Guo, B. Analysis of some finite difference schemes for two?dimensional Ginzburg-Landau equation.Numer. Methods Partial Differ. Equ. 2011, 25, 1340–1363. 5. Geiser, J.; Nasari, A. Comparison of Splitting Methods for Deterministic/Stochastic Gross-Pitaevskii Equation.Math. Comput. Appl. 2019, 24, 76. 6. Geiser, J. Iterative Splitting Method as Almost Asymptotic Symplectic Integrator for Stochastic NonlinearSchrödinger Equation. AIP Conf. Proc. 2017, 1863, 560005. 7. Geiser, J.; Nasari, A. Simulation of multiscale Schrödinger equation with extrapolated splitting approaches.AIP Conf. Proc. 2019, 2116, 450006. 8. Trofimov, V.A.; Peskov, N.V. Comparison of finite difference schemes for the Gross-Pitaevskii equation.Math. Model. Anal. 2009, 14, 109–126. 9. Liszka, T.; Orkisz, J. The finite difference method at arbitrary irregular grids and its application in appliedmechanics. Comput. Struct. 1980, 11, 83–95.10. Benito, J.J.; Ureña, F.; Gavete, L. Influence of several factors in the generalized finite difference method.Appl. Math. Model. 2001, 25, 1039–1053. 11. Gavete, L.; Benito, J.J.; Ureña, F. Generalized finite differences for solving 3D elliptic and parabolic equations.Appl. Math. Model. 2016, 40, 955–965.12. Ureña, F.; Benito, J.J.; Gavete, L. Application of the generalized finite difference method to solve the advection diffusion equation. J. Comput. Appl. Math. 2011, 235, 1849–1855.13. Wang, Y.; Gu, Y.; Liu, J. A domain–decomposition generalized finite difference method for stress analysis inthree-dimensional composite materials. Appl. Math. Lett. 2020, 104, 106226.14. Ureña, F.; Gavete, L.; Benito, J.J.; García, A.; Vargas, A.M. Solving the telegraph equatio. Eng. Anal. Bound. Elem.2020, 112, 13–24.15. Benito, J.J.; García, A.; Gavete, M.L.; Gavete, L.; Negreanu, M.; Ureña, F.; Vargas, A.M. Numerical Simulationof a Mathematical Model for Cancer Cell Invasion. Biomed. J. Sci. Tech. Res. 2019, 23, 17355–17359.16. Benito, J.J.; García, A.; Gavete, L.; Negreanu, M.; Ureña, F.; Vargas, A.M. On the numerical solution to aparabolic-elliptic system with chemotactic and periodic terms using Generalized Finite Differences. Eng. Anal.Bound. Elem. 2020, 113, 181–190.17. Lancaster, P.; Salkauskas, K. Curve and Surface Fitting; Academic Press Inc.: London, UK, 1986.18. Gavete, L.; Ureña, F.; Benito, J.J.; Garcia, A.; Ureña, M.; Salete, E. Solving second order non-linear ellipticpartial differential equations using generalized finite difference method. J. Comput. Appl. Math. 2017, 318,378–387. 19. Fan, C.M.; Huang, Y.K.; Li, P.W.; Chiu, C.L. Application of the generalized finite-difference method to inversebiharmonic boundary value problems. Numer. Heat Transf. Part B Fundam. 2014, 65, 129–154. 20. Ureña, F.; Gavete, L.; Garcia, A.; Benito, J.J.; Vargas, A.M. Solving second order non-linear parabolic PDEsusing generalized finite difference method (GFDM). J. Comput. Appl. Math. 2019, 354, 221–241. 21. Isaacson, E.; Keller, H.B. Analysis of Numerical Methods; John Wiley & Sons Inc.: New York, NY, USA, 1966.22. Kong, L.; Kuang, L. Efficient numerical schemes for two-dimensional Ginzburg-Landau equation in superconductivity. Discret. Contin. Dyn. Syst. Ser. B 2019, 24, 6325–6327. NO Ministerio de Ciencia e Innovación (MICINN) NO Escuela Técnica Superior de Ingenieros Industriales (UNED) DS Docta Complutense RD 1 may 2024