%0 Journal Article %A Ramos López, Raquel %A Sandoval Orozco, Ana Lucila %A García Villalba, Luis Javier %T Compression effects and scene details on the source camera identification of digital videos %D 2021 %U https://hdl.handle.net/20.500.14352/98400 %X The continuous growth of technologies like 4G or 5G has led to a massive use of mobile devices such as smartphones and tablets. This phenomenon, combined with the fact that people use mobile phones for a longer period of time, results in mobile phones becoming the main source of creation of visual information. However, its reliability as a true representation of reality cannot be taken for granted due to the constant increase in editing software. This makes it easier to alter original content without leaving a noticeable trace in the modification. Therefore, it is essential to introduce forensic analysis mechanisms to guarantee the authenticity or integrity of a certain digital video, particularly if it may be considered as evidence in legal proceedings. This paper explains the branch of multimedia forensic analysis that allows to determine the identification of the source of acquisition of a certain video by exploiting the unique traces left by the camera sensor of the mobile device in visual content. To do this, a technique that performs the identification of the source of acquisition of digital videos from mobile devices is presented. It involves 3 stages: (1) Extraction of the sensor fingerprint by applying the block-based technique. (2) Filtering the strong component of the PRNU signal to improve the quality of the sensor fingerprint. (3) Classification of digital videos in an open scenario, that is, where the forensic analyst does not need to have access to the device that recorded the video to find out the origin of the video. The main contribution of the proposed technique eliminates the details of the scene to improve the PRNU fingerprint. It should be noted that these techniques are applied to digital images and not to digital videos. In this work, we show that it is necessary to take this improvement into account to improve the identification of digital videos. Experimental results are also presented that support the validity of the techniques used and show promising results. %~