RT Journal Article T1 Nonrelativistic limit in the 2+1 Dirac oscillator: a Ramsey-interferometry effect A1 Bermúdez, A. A1 Martín Delgado, Miguel Ángel A1 Luis Aina, Alfredo AB We study the nonrelativistic limit of a paradigmatic model in relativistic quantum mechanics, the two-dimensional Dirac oscillator. Remarkably, we find a different kind of Zitterbewegung which persists in this nonrelativistic regime, and leads to an observable deformation of the particle orbit. This effect can be interpreted in terms of a Ramsey-interferometric phenomenon, allowing an insightful connection between relativistic quantum mechanics and quantum optics. Furthermore, subsequent corrections to the nonrelativistic limit, which account for the usual spin-orbit Zitterbewegung, can be neatly understood in terms of a Mach-Zehnder interferometer. PB American Physical Society SN 1050-2947 YR 2008 FD 2008-03-18 LK https://hdl.handle.net/20.500.14352/51487 UL https://hdl.handle.net/20.500.14352/51487 LA eng NO [1] M. Moshinsky and A. Szczepaniak, J. Phys. A 22, L817 (1989).[2] D. Ito, K. Mori, and E. Carrieri, Nuovo Cimento A 51, 1119 (1967).[3] P. A. Cook, Lett. Nuovo Cimento Soc. Ital. Fis. 10, 419 (1971).[4] C. Quesne and M. Moshinsky, J. Phys. A 23, 2263 (1990).[5] M. Moreno and A. Zentella, J. Phys. A 22, L821 (1989).[6] J. Benitez, R. P. Martinez y Romero, H. N. Nuñez-Yepez, and A. L. Salas-Brito, Phys. Rev. Lett. 64, 1643 (1990).[7] R. P. Martinez y Romero, M. Moreno, and A. Zentella, Phys. Rev. D 43, 2036 (1991).[8] E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89 (1963).[9] P. Rozmej and R. Arvieu, J. Phys. A 32, 5367 (1999).[10] R. Arvieu and P. Rozmej, Phys. Rev. A 50, 4376 (1994).[11] R. Arvieu and P. Rozmej, Phys. Rev. A 51, 104 (1995).[12] P. Rozmej and R. Arvieu, J. Phys. B 29, 1339 (1996).[13] D. Leibfried, R. Blatt, C. Monroe, and D.Wineland, Rev. Mod. Phys. 75, 281 (2003).[14] A. Bermudez, M. A. Martin-Delgado, and E. Solano, Phys. Rev. A 76, 041801(R) (2007).[15] N. F. Ramsey, Molecular Beams (Oxford University Press, New York, 1985_; Rev. Mod. Phys. 62, 541 (1990).[16] W. Greiner, Relativistic Quantum Mechanics: Wave Equations (Springer, Berlin, 2000).[17] V. Villalba, Phys. Rev. A 49, 586 (1994).[18] There are two possible situations where the relativistic system is mapped onto the usual Jaynes-Cummings modelIn an active procedure, the substitution _→−_ in Eq. (3) leads to the chiral partner Hamiltonian of the Dirac oscillator which can be directly mapped onto a Jaynes-Cummings interactionConversely, we may regard __↑_ as the ground state and __↓_ as the excited state, with a simultaneous change of sign in the detuning _. This passive procedure is of no consequence since quantum optical detunings can experimentally attain both positive and negative values.[19] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions. Basic Processes and Applications (Wiley-VCH, Weinheim, 2004).[20] P. Meystre and M. Sargent III, Elements of Quantum Optics (Springer-Verlag, Berlin, 1999).[21] A. E. Siegman, Lasers (University Science Books, Sausalito, California, 1986).[22] M. Brune, S. Haroche, V. Lefevre, J. M. Raimond, and N. Zagury, Phys. Rev. Lett. 65, 976 (1990); M. Brune, E. Hagley, J. Dreyer, X. Maître, A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroche, ibid. 77, 4887 (1996).[23] A. B. Klimov and L. L. Sánchez-Soto, Phys. Rev. A 61, 063802 (2000).[24] B. W. Shore and P. L. Knight, J. Mod. Opt. 40, 1195 (1993).[25] W. Vogel and R. L. de Matos Filho, Phys. Rev. A 52, 4214 (1995). NO ©2008 The American Physical Society. We acknowledge financial support from the Spanish MEC project No. FIS2006-04885, the project No. CAM-UCM/910758 (A.B. and M.A.M.D.) and the UCM project No. PR1-A/07-15378 (A.L.). Additionally, we acknowledge support from a FPU MEC grant (A.B.), and the ESF Science Programme INSTANS 2005-2010 (M.A.M.D.). NO Ministerio de Educación y Ciencia (MEC), España NO Universidad Complutense de Madrid (UCM) NO Comunidad de Madrid (CAM) NO European Science Foundation (ESF) DS Docta Complutense RD 16 may 2024