RT Journal Article T1 A data-driven approach to complement the A/T/(N) classification system using CSF biomarkers A1 Hernández Lorenzo, Laura A1 Gil‐Moreno, Maria José A1 Ortega‐Madueño, Isabel A1 Cárdenas Fernández, María Cruz A1 Diez‐Cirarda, María A1 Delgado Álvarez, Alfonso A1 Palacios‐Sarmiento, Marta A1 Matías-Guiu Guía, Jorge A1 Corrochano Sánchez, Silvia A1 Ayala Rodrigo, José Luis A1 Matias‐Guiu Antem, Jordi AB Aims: The AT(N) classification system not only improved the biological characteriza-tion of Alzheimer's disease (AD) but also raised challenges for its clinical application. Unbiased, data-driven techniques such as clustering may help optimize it, rendering informative categories on biomarkers' values.Methods: We compared the diagnostic and prognostic abilities of CSF biomarkers clustering results against their AT(N) classification. We studied clinical (patients from our center) and research (Alzheimer's Disease Neuroimaging Initiative) cohorts. The studied CSF biomarkers included Aβ(1– 42), Aβ(1– 42 ) /Aβ(1– 40) ratio, tTau, and pTau.Results: The optimal solution yielded three clusters in both cohorts, significantly dif-ferent in diagnosis, AT(N) classification, values distribution, and survival. We defined these three CSF groups as (i) non-defined or unrelated to AD, (ii) early stages and/or more delayed risk of conversion to dementia, and (iii) more severe cognitive impair-ment subjects with faster progression to dementia.Conclusion: We propose this data-driven three- group classification as a meaningful and straightforward approach to evaluating the risk of conversion to dementia, com-plementary to the AT(N) system classification. PB Wiley Open Access SN 1755-5930 YR 2023 FD 2023-07-27 LK https://hdl.handle.net/20.500.14352/99840 UL https://hdl.handle.net/20.500.14352/99840 LA eng NO Hernández‐Lorenzo, L., Gil‐Moreno, M. J., Ortega‐Madueño, I., Cárdenas, M. C., Diez‐Cirarda, M., Delgado‐Álvarez, A., Palacios‐Sarmiento, M., Matias‐Guiu, J., Corrochano, S., Ayala, J. L., Matias‐Guiu, J. A., & for the Alzheimer’s Disease Neuroimaging Initiative. (2024). A data‐driven approach to complement the A/T/(N) classification system using CSF biomarkers. CNS Neuroscience & Therapeutics, 30(2), e14382. https://doi.org/10.1111/cns.14382 NO Universidad Complutense de Madrid NO Instituto de Salud Carlos III NO Ministerio de Ciencia, Innovación y Universidades (España) DS Docta Complutense RD 18 abr 2025