TY - JOUR AU - Hernández Lorenzo, Laura AU - Gil‐Moreno, Maria José AU - Ortega‐Madueño, Isabel AU - Cárdenas Fernández, María Cruz AU - Diez‐Cirarda, María AU - Delgado Álvarez, Alfonso AU - Palacios‐Sarmiento, Marta AU - Matías-Guiu Guía, Jorge AU - Corrochano Sánchez, Silvia AU - Ayala Rodrigo, José Luis AU - Matias‐Guiu Antem, Jordi PY - 2023 DO - 10.1111/cns.14382 SN - 1755-5930 UR - https://hdl.handle.net/20.500.14352/99840 T2 - CNS Neuroscience and Therapeutics AB - Aims: The AT(N) classification system not only improved the biological characteriza-tion of Alzheimer's disease (AD) but also raised challenges for its clinical application. Unbiased, data-driven techniques such as clustering may help optimize it,... LA - eng PB - Wiley Open Access KW - Alzheimer's disease KW - Cerebrospinal fluid KW - Clustering analysis KW - Early detection KW - Machine learning KW - Mild cognitive impairment TI - A data-driven approach to complement the A/T/(N) classification system using CSF biomarkers TY - journal article ER -