RT Journal Article T1 The homogeneous geometries of complex hyperbolic space A1 Carmona Jiménez, J. L. A1 Castrillón López, Marco AB We describe the holonomy algebras of all canonical connections and their action on complex hyperbolic spaces CH(n) in all dimensions (n ∈ N). This thorough investigation yields a formula for all Kähler homogeneous structures on complex hyperbolic spaces. Finally, we have related the belonging of the homogeneous structures to the different Tricerri and Vanhecke’s (or Abbena and Garbiero’s) orthogonal and irreducible U(n)-submodules with concrete and determined expressions of the holonomy. YR 2021 FD 2021 LK https://hdl.handle.net/20.500.14352/7226 UL https://hdl.handle.net/20.500.14352/7226 LA eng NO [1] E. Abbena, S. Garbiero. Almost hermitian homogeneous structures, Proc. Edimb.Math. Soc. 31 (2) (1988), 375-395.[2] W. Ambrose, I. M. Singer. On homogeneous Riemannian manifolds, Duke Math. J.25 (4) (1958), 647-669.[3] W. Batat, P. M. Gadea and J. A. Oubiña. Homogeneous pseudo-Riemannian structures of linear type, J. Geom. Phys. 61 (2011), 745-764.[4] A. L. Besse. Einstein manifolds, Springer-Verlag, Berlin Heidelberg (1987).[5] G. Calvaruso, M. Castrillón López. Pseudo-Riemannian Homogeneous Structures, Developments in Mathematics, Springer (2019).[6] J. L. Carmona Jiménez, M. Castrillón López. The Ambrose-Singer theorem for general homogeneous spaces with applications to symplectic geometry, Preprint arXiv:2001.06254 (2020).[7] M. Castrillón López, P. Gadea, A. F. Swann. Homogeneous structures on real and complex hyperbolic spaces, Illinois J. of Math. 53 (2) (2009), 561-574.[8] M. Castrillón López, P. Gadea, A. F. Swann. The homogeneous geometries of real hyperbolic space, Mediterranean J. of Math. 10 (2) (2013).[9] J.C. Díaz-Ramos, M. Domínguez-Vázquez, V. Sanmartín-López. Isoparametric hypersurfaces in complex hyperbolic spaces, Adv. Math. 314 (2017), 756-–805.[10] P. M. Gadea, A. Montesinos Amilibia, J. Muñoz Masqué. Characterizing the complex hyperbolic space by Kähler homogeneous structures, Math. Proc. Cambridge Philos. Soc. 128 (2000), 87-94.[11] P. M. Gadea, J. A. Oubiña. Homogeneous Riemannian structures on Berger 3-spheres, Proc. Edinb. Math. Soc. 48 (2005), 375–387.[12] W. M. Goldman, Complex hyperbolic geometry, Oxford University Press (1999).[13] S. Kobayashi, K. Nomizu. Foundations of Differential Geometry, John Wiley and Sons, New York, Vol. 1,2 (1963,1969).[14] O. Kowalski. Generalized Symmetric Spaces, Volume 805 of Lecture Notes in Mathematics. Springer-Verlag Berlin Heidelberg (1980).[15] K. Nomizu. Invariant affine connections on homogeneous spaces, Amer. J. Math. 76 (1954), 33-65.[16] G. Pipoli, Inverse mean curvature flow in complex hyperbolic space, Ann. Sci. Ec. Norm. Supér. 52 (2019), no. 5, 1107—1135.[17] B. Schmidt, K. Shankar, R. Spatzier. Almost isotropic Kähler manifolds, J. Reine Angew. Math. 767 (2020), 1-–16.20[18] F. Tricerri, L. Vanhecke, Homogeneous structures on Riemannian manifolds, Lon. Math. Soc. Lecture Notes Series 83. Cambridge University Press (1983).[19] D. Witte, Cocompact subgroups of semisimple Lie groups, Lie algebras and related topics. Proceedings of the conference held at the University of Wisconsin, Madison,Wisconsin, May 22–June 1, 1988 (G. Benkart and J. M. Osborn, eds.), Contemporary Mathematics, vol. 110, Amer. Math. Soc., Providence, RI, (1990), 309–313.[20] K. Wong. On effective existence of symmetric differentials of complex hyperbolic space forms, Math. Z. 290 (2018), no. 3-4, 711—733. NO Ministerio de Ciencia e Innovación (MICINN) NO Junta de Castilla y León DS Docta Complutense RD 6 may 2024