RT Journal Article T1 Self-sustained current oscillations in the kinetic theory of semiconductor superlattices A1 Cebrián, Elena A1 Bonilla, Luis L. A1 Carpio Rodríguez, Ana María AB We present the first numerical solutions of a kinetic theory description of self-sustained current oscillations in n-doped semiconductor superlattices. The governing equation is a single-miniband Boltzmann-Poisson transport equation with a BGK (Bhatnagar-Gross-Krook) collision term. Appropriate boundary conditions for the distribution function describe electron injection in the contact regions. These conditions seamlessly become Ohm's law at the injecting contact and the zero charge boundary condition at the receiving contact when integrated over the wave vector. The time-dependent model is numerically solved for the distribution function by using the deterministic Weighted Particle Method. Numerical simulations are used to ascertain the convergence of the method. The numerical results confirm the validity of the Chapman-Enskog perturbation method used previously to derive generalized drift-diffusion equations for high electric fields because they agree very well with numerical solutions thereof. PB Elsevier SN 0021-9991 YR 2009 FD 2009 LK https://hdl.handle.net/20.500.14352/49849 UL https://hdl.handle.net/20.500.14352/49849 LA eng NO Cebrián, E., Bonilla, L. L. y Carpio Rodríguez, A. M. «Self-Sustained Current Oscillations in the Kinetic Theory of Semiconductor Superlattices». Journal of Computational Physics, vol. 228, n.o 20, noviembre de 2009, pp. 7689-705. DOI.org (Crossref), https://doi.org/10.1016/j.jcp.2009.07.008. NO Ministerio de Ciencia, Innovación y Universidades (España) DS Docta Complutense RD 10 abr 2025