RT Journal Article T1 Testing two-component models on very high-energy gamma-ray-emitting BL Lac objects A1 Barrio Uña, Juan Abel A1 Contreras González, José Luis A1 Fonseca González, Mª Victoria A1 Hoang, Kim Dinh A1 López Moya, Marcos A1 Miener, Tjark A1 Morcuende, D. A1 Peñil del Campo, Pablo A1 Saha, Lab A1 Nievas Rosillo, Mireia A1 otros, ... AB Context. It has become evident that one-zone synchrotron self-Compton models are not always adequate for very high-energy (VHE) gamma-ray-emitting blazars. While two-component models perform better, they are difficult to constrain due to the large number of free parameters. Aims. In this work, we make a first attempt at taking into account the observational constraints from very long baseline interferometry (VLBI) data, long-term light curves (radio, optical, and X-rays), and optical polarisation to limit the parameter space for a two-component model and test whether or not it can still reproduce the observed spectral energy distribution (SED) of the blazars. Methods. We selected five TeV BL Lac objects based on the availability of VHE gamma-ray and optical polarisation data. We collected constraints for the jet parameters from VLBI observations. We evaluated the contributions of the two components to the optical flux by means of decomposition of long-term radio and optical light curves as well as modelling of the optical polarisation variability of the objects. We selected eight epochs for these five objects based on the variability observed at VHE gamma rays, for which we constructed the SEDs that we then modelled with a two-component model. Results. We found parameter sets which can reproduce the broadband SED of the sources in the framework of two-component models considering all available observational constraints from VLBI observations. Moreover, the constraints obtained from the long-term behaviour of the sources in the lower energy bands could be used to determine the region where the emission in each band originates. Finally, we attempt to use optical polarisation data to shed new light on the behaviour of the two components in the optical band. Our observationally constrained two-component model allows explanation of the entire SED from radio to VHE with two co-located emission regions. PB EDP Sciencies SN 0004-6361 YR 2020 FD 2020-08-28 LK https://hdl.handle.net/20.500.14352/6665 UL https://hdl.handle.net/20.500.14352/6665 LA eng NO © ESO 2020. Artículo firmado por 203 autores. We would like to thank the anonymous reviewer whose comments have helped us improving this manuscript. VFR and EL were supported by Academy of Finland projects 317636 and 320045. We would like to thank the Instituto de Astrofísica de Canarias for the excellent working conditions at the Observatorio del Roque de los Muchachos in La Palma. The financial support of the German BMBF and MPG; the Italian INFN and INAF; the Swiss National Fund SNF; the ERDF under the Spanish MINECO (FPA2017-87859-P, FPA2017-85668-P, FPA2017-82729-C6-2-R, FPA2017-82729-C6-6-R, FPA2017-82729-C6-5-R, AYA2015-71042-P, AYA2016-76012-C3-1-P, ESP2017-87055-C2-2-P, FPA2017-90566-REDC); the Indian Department of Atomic Energy; the Japanese ICRR, the University of Tokyo, JSPS, and MEXT; the Bulgarian Ministry of Education and Science, National RI Roadmap Project DO1-268/16.12.2019 and the Academy of Finland grant nr. 320045 is gratefully acknowledged. This work was also supported by the Spanish Centro de Excelencia "Severo Ochoa" SEV-2016-0588 and SEV-2015-0548, the Unidad de Excelencia "María de Maeztu" MDM-2014-0369 and the "la Caixa" Foundation (fellowship LCF/BQ/PI18/11630012), by the Croatian Science Foundation (HrZZ) Project IP-2016-06-9782 and the University of Rijeka Project 13.12.1.3.02, by the DFG Collaborative Research Centers SFB823/C4 and SFB876/C3, the Polish National Research Centre grant UMO-2016/22/M/ST9/00382 and by the Brazilian MCTIC, CNPq and FAPERJ. The Fermi-LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. This work performed in part under DOE Contract DE-AC02-76SF00515. Part of this work is based on observations made with the Nordic Optical Telescope, operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofísica de Canarias. We acknowledge the support from the Bulgarian NSF through grants DN 18-1220 13/2017, DN 18-10/2017, KP-06-H28/3 (2018) and KP-06-PN38/1 (2019). This research has made use of data from the OVRO 40-m monitoring program which is supported in part by NASA grants NNX08AW31G, NNX11A043G, and NNX14AQ89G and NSF grants AST-0808050 and AST-1109911. This research has made use of data from the MOJAVE database that is maintained by the MOJAVE team (Lister et al. 2019). Part of this work is based on archival data, software, or online services provided by the Space Science Data Centre -ASI.; This research has made use of data and/or software provided by the High Energy Astrophysics Science Archive Research Center (HEASARC), which is a service of the Astrophysics Science Division at NASA/GSFC and the High Energy Astrophysics Division of the Smithsonian Astrophysical Observatory. NO Ministerio de Economía y Competitividad (MINECO)/FEDER NO Centro de Excelencia "Severo Ochoa" NO Unidad de Excelencia "María de Maeztu" NO Italian INFN Istituto Nazionale di Fisica Nucleare (INFN) NO Academy of Finland NO German BMBF Federal Ministry of Education & Research (BMBF) NO German MPG Max Planck Society NO Italian INAF Istituto Nazionale Astrofisica (INAF) NO Swiss National Fund SNF Swiss National Science Foundation (SNSF) NO Indian Department of Atomic Energy NO Japanese ICRR NO University of Tokyo NO JSPS Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) Japan Society for the Promotion of Science NO MEXT Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) NO Bulgarian Ministry of Education and Science, National RI Roadmap Project NO Academy of Finland NO La Caixa Foundation NO Croatian Science Foundation (HrZZ) Project NO University of Rijeka Project NO DFG German Research Foundation NO Polish National Research Centre NO Brazilian MCTIC NO Brazilian CNPq National Council for Scientific and Technological Development NO Brazilian FAPERJ Carlos Chagas Filho Foundation for Research Support of the State of Rio de Janeiro NO DOE United States Department of Energy NO Bulgarian NSF National Science Fund of Bulgaria NO NASA National Aeronautics & Space Administration NO NSF National Science Foundation DS Docta Complutense RD 4 may 2024