RT Journal Article T1 Non-semisimple Lie algebras with Levi factor so(3), sl(2,R) and their invariants A1 Campoamor Stursberg, Otto-Rudwig AB We analyze the number N of functionally independent generalized Casimir invariants for non-semisimple Lie algebras \frak{s}\overrightarrow{% oplus}_{R}\frak{r} with Levi factors isomorphic to \frak{so}(3) and \frak{sl}(2,R) in dependence of the pair (R,\frak{r}) formed by a representation R of \frak{s} and a solvable Lie algebra \frak{r}. We show that for any dimension n >= 6 there exist Lie algebras \frak{s}\overrightarrow{\oplus}_{R}\frak{r} with non-trivial Levi decomposition such that N(\frak{s}% \overrightarrow{oplus}_{R}\frak{r}) = 0 PB IOP Publishing SN 0305-4470 YR 2003 FD 2003 LK https://hdl.handle.net/20.500.14352/50729 UL https://hdl.handle.net/20.500.14352/50729 LA eng DS Docta Complutense RD 9 abr 2025