RT Journal Article T1 Cross-talk between metabotropic glutamate receptor 7 and beta adrenergic receptor signaling at cerebrocortical nerve terminals A1 Ferrero, José Javier A1 Ramírez-Franco, Jorge A1 Martín Herranz, Ricardo A1 Bartolomé-Martín, David A1 Torres Molina, Magdalena Isabel A1 Sánchez-Prieto Borja, José AB The co-existence of presynaptic G protein coupled receptors, GPCRs, has received little attention, despite the fact that interplay between the signaling pathways activated by such receptors may affect the neurotransmitter release. Using immunocytochemistry and immuhistochemistry we show that mGlu7 and β-adrenergic receptors are co-expressed in a sub-population of cerebrocortical nerve terminals. mGlu7 receptors readily couple to pathways that inhibit glutamate release. We found that when mGlu7 receptors are also coupled to pathways that enhance glutamate release by prolonged exposure to agonist, and β-adrenergic receptors are also activated, a cross-talk between their signaling pathways occurs that affect the overall release response. This interaction is the result of mGlu7 receptors inhibiting the adenylyl cyclase activated by β adrenergic receptors. Thus, blocking Gi/o proteins with pertussis toxin provokes a further increase in release after receptor co-activation which is also observed after activating β-adrenergic receptor signaling pathways downstream of adenylyl cyclase with the cAMP analog Sp8Br or 8pCPT-2-OMe-cAMP (a specific activator of the guanine nucleotide exchange protein directly activated by cAMP, EPAC). Co-activation of mGlu7 and β-adrenergic receptors also enhances PLC-dependent accumulation of IP1 and the translocation of the active zone protein Munc13-1 to the membrane, indicating that release potentiation by these receptors involves the modulation of the release machinery. PB Elsevier SN 0028-3908 YR 2015 FD 2015 LK https://hdl.handle.net/20.500.14352/96897 UL https://hdl.handle.net/20.500.14352/96897 LA eng NO Ferrero, José Javier, et al. «Cross-Talk between Metabotropic Glutamate Receptor 7 and Beta Adrenergic Receptor Signaling at Cerebrocortical Nerve Terminals». Neuropharmacology, vol. 101, febrero de 2016, pp. 412-25. https://doi.org/10.1016/j.neuropharm.2015.07.025. NO Ministerio de Economía y Competitividad (España) NO Instituto de Salud Carlos III NO Comunidad de Madrid DS Docta Complutense RD 14 dic 2025