RT Journal Article T1 Geometric properties of infinite graphs and the Hardy-Littlewood maximal operator A1 Soria de Diego, Francisco Javier A1 Tradacete, Pedro AB We study different geometric properties on infinite graphs, related to the weak-type boundedness of the Hardy–Littlewood maximal averaging operator. In particular, we analyze the connections between the doubling condition, having finite dilation and overlapping indices, uniformly bounded degree, the equidistant comparison property and the weak-type boundedness of the centered Hardy–Littlewood maximal operator. Several non-trivial examples of infinite graphs are given to illustrate the differences among these properties. PB Springer SN 2737-0690 YR 2019 FD 2019 LK https://hdl.handle.net/20.500.14352/93673 UL https://hdl.handle.net/20.500.14352/93673 LA eng NO Soria, J., Tradacete, P. Geometric properties of infinite graphs and the Hardy–Littlewood maximal operator. JAMA 137, 913–937 (2019). https://doi.org/10.1007/s11854-019-0019-5 NO Ministerio de Economía, Comercio y Empresa (España) NO Generalitat de Catalunya DS Docta Complutense RD 4 abr 2025