RT Dissertation/Thesis T1 Robust modeling for information acquisition in biophysical and critical scenarios T2 Modelado robusto para la extracción de información en entornos biofísicos y críticos A1 Pagán Ortiz, Josué AB The era of information and Big Data is an environment where multiple devices, always connected, generate huge volumes of information (paradigm of the Internet of Things). This paradigm is present in different areas: the Smart Cities, sport tracking, lifestyle, or health. The goal of this thesis is the development and implementation of a Robust predictive modeling methodology using low cost wearable devices in biophysical and critical scenarios. In this manuscript we present a multilevel architecture that covers from the on-node data processing, up to the data management in Data Centers. The methodology applies energy aware optimization techniques at each level of the network. And the decision system makes use of data from different sources leading to expert decision system... AB La era de la información y el Big Data, se sustenta en un entorno en el que múltiples dispositivos, siempre conectados, generan ingentes volúmenes de información (paradigma del Internet de las Cosas). Este paradigma ha llegado diversos entornos: las denominadas ciudades inteligentes, monitorización deportiva, estilo de vida, o salud. El objetivo de esta tesis es el desarrollo e implementación de una metodología de modelado predictivo robusto mediante dispositivos wearable de bajo coste en entornos biofísicos y críticos. A lo largo de este manuscrito se presenta una arquitectura multinivel que abarca desde el tratamiento de los datos en los dispositivos sensores hasta el manejo de éstos en centros de datos. La metodología cubre la optimización energética a todos los niveles con consciencia del estado de la red. Y el sistema de decisión hace uso de datos de distintas fuentes para conformar un sistema experto de decisión... PB Universidad Complutense de Madrid YR 2019 FD 2019-06-20 LK https://hdl.handle.net/20.500.14352/17169 UL https://hdl.handle.net/20.500.14352/17169 LA spa NO Tesis inédita de la Universidad Complutense de Madrid, Facultad de Informática, Departamento de Arquitectura de Computadores y Automática, leída el 12/07/2018 DS Docta Complutense RD 28 abr 2025