%0 Journal Article %A Padilla Mondéjar, Sussette %A Román Zaragoza, Jesús %A Vallet Regí, María Dulce Nombre %T Synthesis of porous hydroxyapatites by combination of gelcasting and foams burn out methods %D 2002 %@ 0957-4530 %U https://hdl.handle.net/20.500.14352/117513 %X The biocompatibility and the osteoconductive behavior of hydroxyapatite (OHAp) ceramics are well established. Bioceramics made of OHAp are available in dense and porous form. Recently it has been proved that the volume of bone ingrowth at early times is primarily interconnectivity dependent. A new method for the obtention of porous OHAp ceramics that combine the in situ polymerization (gel casting method) and the foams burn out is proposed. Four polyurethane foams with different cells/cm were used. The foams were fully filled of an OHAp polymerizable suspension that after gelled produced very homogeneous and strong green bodies. After different thermal treatments the green bodies yield porous OHAp ceramics that were a replica of the foams used. Materials used in this work were studied by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), N(2) adsorption isotherm, particle size distribution, and Hg porosimetry. Porous pieces of OHAp obtained are constituted by polyhedral-like particles (0.45-1.0 microm) that are surrounded by an interconnected network of pores. A bimodal distribution of the pores size between 30.8-58.6 and 1.0-1.2 microm has been observed. The size of the interconnected pores (30.8-58.6 microm) was controlled as a function of the cells/cm of the foam while the volume of the small pores was modified as a function of the sintering time. The presence of pores could promote the bone ingrowth and also could be used to insert different drugs, which makes these porous pieces a potential candidate to be used as non-load-bearing bone implants and as drug delivery systems. %~