%0 Report
%A Bujosa Brun, Marcos
%A Bujosa Brun, Andrés
%A García Ferrer, Antonio
%T Mathematical framework for pseudo-spectra of linear stochastic difference equations
%J Documentos de Trabajo del Instituto Complutense de Análisis Económico (ICAE)
%D 2013
%U https://hdl.handle.net/20.500.14352/41468
%X Although spectral analysis of stationary stochastic processes has solid mathematical foundations, this is not always so for some non-stationary cases. Here, we establish a rigorous mathematical extension of the classic Fourier spectrum to the case in which there are AR roots in the unit circle, ie, the transfer function of the linear time-invariant filter has poles on the unit circle. To achieve it we: embed the classical problem in a wider framework, the Rigged Hilbert space, extend the Discrete Time Fourier Transform and defined a new Extended Fourier Transform pair pseudo-covariance function/pseudo-spectrum. Our approach is a proper extension of the classical spectral analysis, within which the Fourier Transform pair auto-covariance function/spectrum is a particular case. Consequently spectrum and pseudo-spectrum coincide when the first one is defined.
%~