TY - JOUR AU - Carpio Rodríguez, Ana María AU - Pierret, Emile PY - 2022 DO - 10.1016/j.rinp.2022.105375 SN - 2211-3797 UR - https://hdl.handle.net/20.500.14352/72640 T2 - Results in physics AB - We develop a Bayesian inference framework to quantify uncertainties in epidemiological models. We use SEIJR and SIJR models involving populations of susceptible, exposed, infective, diagnosed, dead and recovered individuals to infer from Covid-19 data... LA - eng PB - Elsevier KW - SEIJR models KW - Covid-19 KW - Numerical simulation KW - Bayesian inference. Uncertainty quantification TI - Uncertainty quantification in Covid-19 spread: Lockdown effects TY - journal article VL - 35 ER -