TY - JOUR AU - Muñoz-Fernández, Gustavo A. AU - Sarantopoulos, Y AU - Seoane Sepúlveda, Juan Benigno PY - 2010 DO - 10.1090/S0002-9939-10-10295-0 SN - 0002-9939 UR - https://hdl.handle.net/20.500.14352/43652 T2 - Proceedings of the American Mathematical Society AB - K. Ball has proved the "complex plank problem": if (x(k))(k=1)(n) is a sequence of norm I vectors in a complex Hilbert space (H, (., .)), then there exists a unit vector x for which |< x,x(k)>| >= 1/root n, k = 1,...,n. In general, this result is not... LA - eng M2 - 2521 PB - American Mathematical Society KW - Plank problems KW - Polarization constants KW - Product of linear functionals TI - The real plank problem and some applications. TY - journal article VL - 138 ER -