RT Journal Article T1 Lead isotope fingerprinting techniques help identify and quantify 3000 years of atmospheric lead pollution from Laguna Roya, northwestern Iberia A1 Griffore, Melissa P. A1 Shiel, Alyssa E. A1 Rutila, Elizabeth C. A1 Hillman, Aubrey L. A1 Barreiro Lostres, Fernando A1 Valero-Garcés, Blas A1 Morellón Marteles, Mario A1 Abbott, Close Mark B. AB Legacy pollution research has established that over the past 3000 years, mining and metallurgical activities have resulted in widespread deposition of lead (Pb) pollution. However, there is still a limited understanding of how humans have impacted the long-term cycling of Pb in the environment. We present a 4,000-year lake sediment Pb isotope record from Laguna Roya, northwestern Iberia, that identifies and quantifies the predominant sources of atmospheric Pb pollution. For the first time, Pb isotopic compositions of ancient slag samples dated (∼600 BCE–200 CE) from a mining district in the southwest of the Iberian Peninsula are compared to Pb isotope ratios of Pb pollution deposited contemporaneously in lake sediments. In addition, literature Pb isotope ratios of ores from mining regions throughout Iberia are compared with those of leaded gasoline and coal to identify additional sources of anthropogenic Pb. Deposition of atmospheric Pb pollution begins after 950 BCE, and until 1750 CE, the Pb isotopic composition most resembles the southwestern slag deposits, containing a mixture of Pb ores from southeast Iberia (up to 36%) and southwest Iberia (∼74%). Between 1750 and 1960 CE, Pb pollution is atLegacy pollution research has established that over the past 3000 years, mining and metallurgical activities have resulted in widespread deposition of lead (Pb) pollution. However, there is still a limited understanding of how humans have impacted the long-term cycling of Pb in the environment. We present a 4,000-year lake sediment Pb isotope record from Laguna Roya, northwestern Iberia, that identifies and quantifies the predominant sources of atmospheric Pb pollution. For the first time, Pb isotopic compositions of ancient slag samples dated (∼600 BCE–200 CE) from a mining district in the southwest of the Iberian Peninsula are compared to Pb isotope ratios of Pb pollution deposited contemporaneously in lake sediments. In addition, literature Pb isotope ratios of ores from mining regions throughout Iberia are compared with those of leaded gasoline and coal to identify additional sources of anthropogenic Pb. Deposition of atmospheric Pb pollution begins after 950 BCE, and until 1750 CE, the Pb isotopic composition most resembles the southwestern slag deposits, containing a mixture of Pb ores from southeast Iberia (up to 36%) and southwest Iberia (∼74%). Between 1750 and 1960 CE, Pb pollution is attributed to PbLegacy pollution research has established that over the past 3000 years, mining and metallurgical activities have resulted in widespread deposition of lead (Pb) pollution. However, there is still a limited understanding of how humans have impacted the long-term cycling of Pb in the environment. We present a 4,000-year lake sediment Pb isotope record from Laguna Roya, northwestern Iberia, that identifies and quantifies the predominant sources of atmospheric Pb pollution. For the first time, Pb isotopic compositions of ancient slag samples dated (∼600 BCE–200 CE) from a mining district in the southwest of the Iberian Peninsula are compared to Pb isotope ratios of Pb pollution deposited contemporaneously in lake sediments. In addition, literature Pb isotope ratios of ores from mining regions throughout Iberia are compared with those of leaded gasoline and coal to identify additional sources of anthropogenic Pb. Deposition of atmospheric Pb pollution begins after 950 BCE, and until 1750 CE, the Pb isotopic composition most resembles the southwestern slag deposits, containing a mixture of Pb ores from southeast Iberia (up to 36%) and southwest Iberia (∼74%). Between 1750 and 1960 CE, Pb pollution is attributed to Pb mining in southcentral Iberia. After 1960 CE, the dominant Pb pollution source (∼85%) is again metal refining in southwestern Iberia, and only ∼15% is from leaded gasoline. Provenance and reconstruction of the temporal and spatial distribution of legacy Pb pollution further our understanding of how humans have affected the biogeochemical cycle of this toxic element in the environment over time. mining in southcentral Iberia. After 1960 CE, the dominant Pb pollution source (∼85%) is again metal refining in southwestern Iberia, and only ∼15% is from leaded gasoline. Provenance and reconstruction of the temporal and spatial distribution of legacy Pb pollution further our understanding of how humans have affected the biogeochemical cycle of this toxic element in the environment over time.tributed to Pb mining in southcentral Iberia. After 1960 CE, the dominant Pb pollution source (∼85%) is again metal refining in southwestern Iberia, and only ∼15% is from leaded gasoline. Provenance and reconstruction of the temporal and spatial distribution of legacy Pb pollution further our understanding of how humans have affected the biogeochemical cycle of this toxic element in the environment over time. PB Elsevier SN 2213-3054 YR 2023 FD 2023-06 LK https://hdl.handle.net/20.500.14352/73233 UL https://hdl.handle.net/20.500.14352/73233 LA eng NO Hewlett Foundation NO University of Pittsburgh International Studies Fund NO CSIC I-Link program NO Ministerio de Econmía y Competitividad DS Docta Complutense RD 10 abr 2025