RT Journal Article T1 Silica Removal from a Paper Mill Effluent by Adsorption onPseudoboehmite and γ-Al2O3 A1 Miranda Carreño, Rubén A1 Latour Romero, Isabel A1 Blanco Suárez, María Ángeles AB Effluent reuse is a common practice for sustainable industrial water use. Salt removal is usually carried out by a combination of membrane processes with a final reverse osmosis (RO). However, the presence of silica limits the RO efficiency due to its high scaling potential and the difficulty of cleaning the fouled membranes. Silica adsorption has many advantages compared to coagulation and precipitation at high pHs: pH adjustment is not necessary, the conductivity of treated waters is not increased, and there is no sludge generation. Therefore, this study investigates the feasibility of using pseudoboehmite and its calcination product (γ-Al2O3 ) for silica adsorption from a paper mill effluent. The effect of sorbent dosage, pH, and temperature, including both equilibrium and kinetics studies, were studied. γ-Al2O3 was clearly more efficient than pseudoboehmite, with optimal dosages around 2.5–5 g/L vs. 7.5–15 g/L. The optimum pH is around 8.5–10, which fits well with the initial pH of the effluent. The kinetics of silica adsorption is fast, especially at high dosages and temperatures: 80–90% of the removable silica is removed in 1 h. At these conditions, silica removal is around 75–85% PB MDPI SN 2073-4441 YR 2021 FD 2021 LK https://hdl.handle.net/20.500.14352/7470 UL https://hdl.handle.net/20.500.14352/7470 LA eng NO Comunidad de Madrid NO Ministerio de Economía, Industria y Competitividad DS Docta Complutense RD 23 oct 2025