RT Journal Article T1 Algebrability and nowhere Gevrey differentiability A1 Seoane Sepúlveda, Juan Benigno A1 Bastin, F. A1 Conejero, Jose A. A1 Esser, C. AB We show that there exist c-generated algebras (and dense in C ∞([0, 1])) every nonzero element of which is a nowhere Gevrey differentiable function. This leads to results of dense algebrability (and, therefore, lineability) of functions enjoying this property. In the process of proving these results we also provide a new construction of nowhere Gevrey differentiable functions. PB Hebrew University Magnes Press SN 0021-2172 YR 2015 FD 2015-02 LK https://hdl.handle.net/20.500.14352/22986 UL https://hdl.handle.net/20.500.14352/22986 LA eng NO Aron, R. M., García-Pacheco, F. J., Pérez-García, D., Seoane-Sepúlveda, J. B. (2009) On dense-lineability of sets of functions on ℝ. Topology 48: pp. 149-156Aron, R. M., Gurariy, V. I., Seoane-Sepúlveda, J. B. (2005) Lineability and spaceability of sets of functions on ℝ. Proceedings of the American Mathematical Society 133: pp. 795-803Aron, R. M., Pérez-García, D., Seoane-Sepúlveda, J. B. (2006) Algebrability of the set of non-convergent Fourier series. Studia Mathematica 175: pp. 83-90Aron, R. M., Seoane-Sepúlveda, J. B. (2007) Algebrability of the set of everywhere surjective functions on ℂ. Bulletin of the Belgian Mathematical Society. Simon Stevin 14: pp. 25-31Balcerzak, M., Bartoszewicz, A., Filipczak, M. (2013) Nonseparable spaceability and strong algebrability of sets of continuous singular functions. Journal of Mathematical Analysis and Applications 407: pp. 263-269A. Bartoszewicz, M. Bienias, M. Filipczak and S. G_lşab, Exponential-like function method in strong c-algebrability, arXiv:1307.0331.Bartoszewicz, A., Głşab, S. (2013) Strong algebrability of sets of sequences and functions. Proceedings of the American Mathematical Society 141: pp. 827-835Bartoszewicz, A., Głşab, S. (2013) Additivity and lineability in vector spaces. Linear Algebra and its Applications 439: pp. 2123-2130Bastin, F., Esser, C., Nicolay, S. (2012) Prevalence of “nowhere analyticity”. Studia Mathematica 210: pp. 239-246Bayart, F., Quarta, L. (2007) Algebras in sets of queer functions. Israel Journal of Mathematics 158: pp. 285-296Bernal-González, L. (2008) Lineability of sets of nowhere analytic functions. Journal of Mathematical Analysis and Applications 340: pp. 1284-1295Bernal-González, L. (2010) Algebraic genericity of strict-order integrability. Studia Mathematica 199: pp. 279-293Bernal-González, L., Pellegrino, D., Seoane-Sepúlveda, J. B. (2014) Linear subsets of nonlinear sets in topological vector spaces. Bulletin of the American Mathematical Society (N.S.) 51: pp. 71-130Botelho, G., Cariello, D., Fávaro, V. V., Pellegrino, D. (2012) Maximal spaceability in sequence spaces. Linear Algebra and its Applications 437: pp. 2978-2985Botelho, G., Cariello, D., Fávaro, V. V., Pellegrino, D., Seoane-Sepúlveda, J. B. (2013) Distinguished subspaces of L p of maximal dimension. Studia Mathematica 215: pp. 261-280G. Botelho, D. Cariello, V. V. Fávaro, D. Pellegrino and J. B. Seoane-Sepúlveda, On very non-linear subsets of continuous functions, Quarterly Journal of Mathematics (2013), in press. doi:10.1093/qmath/hat043.Chung, S.-Y., Chung, J. (2005) There exist no gaps between Gevrey differentiable and nowhere Gevrey differentiable. Proceedings of the American Mathematical Society 133: pp. 859-863Conejero, J. A., Jiménez-Rodríguez, P., Muñoz-Fernández, G. A., Seoane-Sepúlveda, J. B. (2014) When the Identity Theorem “seems” to fail. American Mathematical Monthly 121: pp. 60-68Enflo, P. H., Gurariy, V. I., Seoane-Sepúlveda, J. B. (2014) Some results and open questions on spaceability in function spaces. Transactions of the American Mathematical Society 366: pp. 611-625Fonf, V. P., Gurariy, V. I., Kadets, M. I. (1999) An infinite-dimensional subspace of C[0, 1]consisting of nowhere differentiable functions. Comptes Rendus de l’Académie Bulgare des Sciences 52: pp. 13-16García, D., Grecu, B. C., Maestre, M., Seoane-Sepúlveda, J. B. (2010) Infinite dimensional Banach spaces of functions with nonlinear properties. Mathematische Nachrichten 283: pp. 712-720García-Pacheco, F. J., Martín, M., Seoane-Sepúlveda, J. B. (2009) Lineability, spaceability, and algebrability of certain subsets of function spaces. Taiwanese Journal of Mathematics 13: pp. 1257-1269Gurariy, V. I. (1966) Subspaces and bases in spaces of continuous functions. Dokladi Akademii Nauk SSSR 167: pp. 971-973Gurariy, V. I., Quarta, L. (2004) On lineability of sets of continuous functions. Journal of Mathematical Analysis and Applications 294: pp. 62-72Hencl, S. (2000) Isometrical embeddings of separable Banach spaces into the set of nowhere approximatively differentiable and nowhere Hölder functions. Proceedings of the American Mathematical Society 128: pp. 3505-3511Hunt, B. R., Sauer, T., Yorke, J. A. (1992) Prevalence: a translation-invariant “almost every” on infinite-dimensional spaces. Bulletin of the American Mathematical Society 27: pp. 217-238Levine, B., Milman, D. (1940) On linear sets in space C consisting of functions of bounded variation. Comm. Inst. Sci. Math. Méc. Univ. Kharkoff [Zapiski Inst. Mat. Mech.] (4) 16: pp. 102-105Morgenstern, D. (1954) Unendlich oft differenzierbare nicht-analytische Funktionen. Mathematische Nachrichten 12: pp. 74Rodríguez-Piazza, L. (1995) Every separable Banach space is isometric to a space of continuous nowhere differentiable functions. Proceedings of the American Mathematical Society 123: pp. 3649-3654Wheeden, R. L., Zygmund, A. (1977) Measure and Integral. Marcel Dekker, New YorkYamanaka, T. (1989) A new higher order chain rule and Gevrey class. Annals of Global Analysis and Geometry 7: pp. 179-203 NO Programa de Investigación y Desarrollo de la UPV NO Research Fellow from the Fonds National de la Recherche Scientifique NO CNPq DS Docta Complutense RD 7 abr 2025