RT Journal Article T1 Projected entangled pair states: fundamental analytical and numerical limitations A1 Scarpa, G. A1 Molnár, Andras A1 Gé, Y. A1 García Ripoll, J. J. A1 Schuch, N. A1 Pérez García, David A1 Iblisdir, Sofyan AB Matrix product states and projected entangled pair states (PEPS) are powerful analytical and numerical tools to assess quantum many-body systems in one and higher dimensions, respectively. While matrix product states are comprehensively understood, in PEPS fundamental questions, relevant analytically as well as numerically, remain open, such as how to encode symmetries in full generality, or how to stabilize numerical methods using canonical forms. Here, we show that these key problems, as well as a number of related questions, are algorithmically undecidable, that is, they cannot be fully resolved in a systematic way. Our work thereby exposes fundamental limitations to a full and unbiased understanding of quantum manybody systems using PEPS. PB American Physical Society SN 0031-9007 YR 2020 FD 2020-11-20 LK https://hdl.handle.net/20.500.14352/7733 UL https://hdl.handle.net/20.500.14352/7733 LA eng NO Scarpa, G., Molnár, A., Gé, Y. et al. «Projected Entangled Pair States: Fundamental Analytical and Numerical Limitations». Physical Review Letters, vol. 125, n.o 21, noviembre de 2020, p. 210504. DOI.org (Crossref), https://doi.org/10.1103/PhysRevLett.125.210504. NO Unión Europea. Horizonte 2020 NO Ministerio de Economía, Comercio y Empresa (España) NO Ministerio de Ciencia, Innovación y Universidades (España) NO Comunidad de Madrid NO Centro de Excelencia Severo Ochoa NO Generalitat de Catalunya NO Fundación Alemana de Investigación Científica DS Docta Complutense RD 8 abr 2025