RT Journal Article T1 Positive solutions for slightly subcritical elliptic problems via Orlicz Spaces A1 Pardo San Gil, Rosa María A1 Cuesta, Mabel AB This paper concerns semilinear elliptic equations involving sign-changing weight function and a nonlinearity of subcritical nature understood in a generalized sense. Using an Orlicz–Sobolev space setting, we consider superlinear nonlinearities which do not have a polynomial growth, and state sufficient conditions guaranteeing the Palais–Smale condition. We study the existence of a bifurcated branch of classical positive solutions, containing a turning point, and providing multiplicity of solutions. PB Springer YR 2022 FD 2022-04-25 LK https://hdl.handle.net/20.500.14352/89041 UL https://hdl.handle.net/20.500.14352/89041 LA eng NO Cuesta, M., Pardo, R.: Positive Solutions for Slightly Subcritical Elliptic Problems Via Orlicz Spaces. Milan J. Math. 90, 229-255 (2022). https://doi.org/10.1007/s00032-022-00354-1 NO "Correction to: Positive solutions for Slightly subcritical elliptic problems via Orlicz Spaces" puede consultarse en: https://hdl.handle.net/20.500.14352/71664.3 NO Ministerio de Ciencia, Innovación y Universidades (España) NO Universidad Complutense de Madrid/Banco de Santander (España) DS Docta Complutense RD 17 abr 2025