RT Book, Section T1 Well posedness and numerical solution of kinetic models for angiogenesis A1 Carpio Rodríguez, Ana María A1 Cebrián, Elena A1 Duro, Gema AB Angiogenesis processes including the effect of stochastic branching and spread of blood vessels can be described coupling a (nonlocal in time) integrodifferential kinetic equation of Fokker-Planck type with a diffusion equation for the angiogenic factor. Well posedness studies underline the importance of preserving positivity when constructing approximate solutions. We devise order one positivity preserving schemes for a reduced model and show that soliton-like asymptotic solutions are correctly captured. We also find good agreement with the original stochastic model from which the deterministic kinetic equations are derived working with ensemble averages. Higher order positivity preserving schemes can be devised combining WENO and SSP procedures. PB Universidad de Oviedo SN 9788418482212 YR 2021 FD 2021 LK https://hdl.handle.net/20.500.14352/8839 UL https://hdl.handle.net/20.500.14352/8839 LA eng NO Coordinadores: Rafael Gallego, Mariano Mateos (2021), Proceedings of the XXVI Congreso de EcuacionesDiferenciales y Aplicaciones / XVI Congreso de Matemática Aplicada. Universidad de Oviedo. NO Ministerio de Ciencia, Innovación y Universidades (España) DS Docta Complutense RD 15 abr 2025