RT Journal Article T1 The Gonality Of Riemann Surfaces Under Projections By Normal Coverings A1 Bujalance García, Emilio A1 Etayo Gordejuela, José Javier A1 Gamboa Mutuberria, José Manuel A1 Gromadzki, G. AB A compact Riemann surface X of genus g ≥ 2 which can be realized as a q-fold, normal covering of a compact Riemann surface of genus p is said to be (q, p)-gonal. In particular the notion of (2, p)-gonality coincides with p-hyperellipticity and (q, 0)-gonality coincides with ordinary q-gonality.Here we completely determine the relationship between thegonalities of X and Y for an N-fold normal covering X → Y between compact Riemann surfaces X and Y.As a consequence we obtain classical results due to Maclachlan (1971) [5] and Martens (1977) [6]. PB Elsevier Science SN 0022-4049 YR 2011 FD 2011 LK https://hdl.handle.net/20.500.14352/42173 UL https://hdl.handle.net/20.500.14352/42173 LA eng NO Bujalance García, E., Etayo Gordejuela, J. J., Gamboa Mutuberria, J. M. & Gromadzki, G. «The Gonality of Riemann Surfaces under Projections by Normal Coverings». Journal of Pure and Applied Algebra, vol. 215, n.o 5, mayo de 2011, pp. 983-88. DOI.org (Crossref), https://doi.org/10.1016/j.jpaa.2010.07.004. NO Proyecto Santander Complutense[PR34/07-15813]; GAAR Grupos UCM[910444]; Polish Ministry of Sciences and Higher Education[NN201366436]; [MTM2008-00250]; [MTM2008-00272] DS Docta Complutense RD 6 abr 2025