RT Journal Article T1 Hybrid functionalized coatings on Metallic Biomaterials for Tissue Engineering A1 Santos Coquillat, Ana María A1 Martínez Campos, Enrique A1 Mora Sánchez, Hugo A1 Moreno Turiegano, Lara A1 Arrabal Durán, Raúl A1 Mohedano Sánchez, Marta A1 Gallardo, Alberto A1 Rodríguez Hernández, Juan A1 Matykina, Endzhe AB The review encompasses state-of-the-art strategies for design and fabrication of smart biomaterials for tissue engineering. The focus of the work is mainly put on metallic biomaterials with hybrid coatings consisting of bioceramic and polymeric layers with hierarchical organization and drug-eluting capacity.Key technologies and steps to design hybrid smart and multifunctional coatings on metallic cores for bone regeneration implants and cardiovascular stents are outlined, including additive manufacturing of titanium and magnesium alloys for permanent and temporary implant applications. Three levels of hierarchical surface functionalization are described: i) in situ modification of the core material, incorporating bioactive inorganic species and phases by means of ceramic coatings via anodic electrochemical treatments; ii) post-treatment application of polymer layers, monolithic or with specific porous breath figure topography; and iii) application of a cellular therapy component (single cell or cell sheet). Recent progress in incorporation of drug-eluting functionality into such materials via direct or nanocarrier-assisted loading is also highlighted. PB Elsevier SN 0257-8972 YR 2021 FD 2021-07-17 LK https://hdl.handle.net/20.500.14352/4756 UL https://hdl.handle.net/20.500.14352/4756 LA eng NO J.M. Pollok, J.P. VacantiTissue engineeringSemin. Pediatr. Surg., 5 (1996), pp. 191-196View Record in ScopusGoogle Scholar[2]R. Langer, D.A. TirrellDesigning materials for biology and medicineNature, 428 (2004), pp. 487-492 View PDFView Record in ScopusGoogle Scholar[3]M. Maisani, D. Pezzoli, O. Chassande, D. MantovaniCellularizing hydrogel-based scaffolds to repair bone tissue: how to create a physiologically relevant micro-environment?J. Tissue Eng., 8 (2017), Article 2041731417712073Google Scholar[4]Q. Chen, G.A. ThouasMetallic implant biomaterialsMater. Sci. Eng. R. Rep., 87 (2015), pp. 1-57ArticleDownload PDFGoogle Scholar[5]I. KulinetsS.F. Amato, R.M. Ezzell (Eds.), 1 - Biomaterials and their Applications in Medicine, Regulatory Affairs for Biomaterials and Medical Devices, Woodhead Publishing (2015), pp. 1-10ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar[6]M. Navarro, A. Michiardi, O. Castaño, J.A. PlanellBiomaterials in orthopaedicsJ. R. Soc. Interface, 5 (2008), pp. 1137-1158 View PDFCrossRefView Record in ScopusGoogle Scholar[7]L.L. Hench, J.M. PolakThird-generation biomedical materialsScience, 295 (2002), pp. 1014-1017View Record in ScopusGoogle Scholar[8]C. Piconi, A.A. PorporatiBioinert ceramics: zirconia and aluminaI.V. Antoniac (Ed.), Handbook of Bioceramics and Biocomposites, Springer International Publishing, Cham (2016), pp. 59-89 View PDFCrossRefView Record in ScopusGoogle Scholar[9]J.S. Fernandes, P. Gentile, R.A. Pires, R.L. Reis, P.V. HattonMultifunctional bioactive glass and glass-ceramic biomaterials with antibacterial properties for repair and regeneration of bone tissueActa Biomater., 59 (2017), pp. 2-11ArticleDownload PDFView Record in ScopusGoogle Scholar[10]S. Bertazzo, W.F. Zambuzzi, D.D. Campos, T.L. Ogeda, C.V. Ferreira, C.A. BertranHydroxyapatite surface solubility and effect on cell adhesionColloids Surf. B: Biointerfaces, 78 (2010), pp. 177-184ArticleDownload PDFView Record in ScopusGoogle Scholar[11]A. Civantos, E. Martínez-Campos, V. Ramos, C. Elvira, A. Gallardo, A. AbarrategiTitanium coatings and surface modifications: toward clinically useful bioactive implantsACS Biomater Sci. Eng., 3 (2017), pp. 1245-1261 View PDFCrossRefView Record in ScopusGoogle Scholar[12]N. López-Valverde, J. Flores-Fraile, J.M. Ramírez, B.M.D. Sousa, S. Herrero-Hernández, A. López-ValverdeBioactive surfaces vs. conventional surfaces in titanium dental implants: a comparative systematic reviewJ. Clin. Med., 9 (2020), p. 2047 View PDFCrossRefGoogle Scholar[13]C. Alvarez-Lorenzo, A. ConcheiroSmart drug delivery systems: from fundamentals to the clinicChem. Commun., 50 (2014), pp. 7743-7765View Record in ScopusGoogle Scholar[14]S. Adeosun, M. Ilomuanya, O. Gbenebor, M. Dada, C. OdiliBiomaterials for drug delivery: sources, classification, synthesis, processing, and applicationsAdv. Funct. Mater. (2020), 10.5772/intechopen.93368 View PDFGoogle Scholar[15]B.M. Holzapfel, J.C. Reichert, J.-T. Schantz, U. Gbureck, L. Rackwitz, U. Nöth, F. Jakob, M. Rudert, J. Groll, D.W. HutmacherHow smart do biomaterials need to be? A translational science and clinical point of viewAdv. Drug Deliv. Rev., 65 (2013), pp. 581-603ArticleDownload PDFView Record in ScopusGoogle Scholar[16]C. Ning, L. Zhou, G. TanFourth-generation biomedical materialsMater. Today, 19 (2016), pp. 2-3ArticleDownload PDFView Record in ScopusGoogle Scholar[17]N. Sachot, M.A. Mateos-Timoneda, J.A. Planell, A.H. Velders, M. Lewandowska, E. Engel, O. CastañoTowards 4th generation biomaterials: a covalent hybrid polymer–ormoglass architectureNanoscale, 7 (2015), pp. 15349-15361 View PDFCrossRefView Record in ScopusGoogle Scholar[18]S. Amukarimi, S. Ramakrishna, M. Mozafari, Smart biomaterials - a proposed definition and overview of the field, Curr. Opin. Biomed. Eng., DOI https://doi.org/10.1016/j.cobme.2021.100311(2021) 100311.Google Scholar[19]M.S. Anju, D.K. Raj, B.K. Madathil, N. Kasoju, P.R. Anil KumarIntelligent biomaterials for tissue engineering and biomedical applications: current landscape and future prospectsB. Bhaskar, P. Sreenivasa Rao, N. Kasoju, V. Nagarjuna, R.R. Baadhe (Eds.), Biomaterials in Tissue Engineering and Regenerative Medicine: From Basic Concepts to State of the Art Approaches, Springer Singapore, Singapore (2021), pp. 535-560 View PDFCrossRefView Record in ScopusGoogle Scholar[20]R. Erbel, C. Di Mario, J. Bartunek, J. Bonnier, B. de Bruyne, F.R. Eberli, P. Erne, M. Haude, B. Heublein, M. Horrigan, C. Ilsley, D. Böse, J. Koolen, T.F. Lüscher, N. Weissman, R. WaksmanTemporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trialLancet, 369 (2007), pp. 1869-1875ArticleDownload PDFView Record in ScopusGoogle Scholar[21]W. Wang, K.W.K. YeungBone grafts and biomaterials substitutes for bone defect repair: a reviewBioact. Mater., 2 (2017), pp. 224-247ArticleDownload PDFView Record in ScopusGoogle Scholar[22]H.T. Aro, A.J. AhoClinical use of bone allograftsAnn. Med., 25 (1993), pp. 403-412 View PDFCrossRefView Record in ScopusGoogle Scholar[23]K. Prasad, O. Bazaka, M. Chua, M. Rochford, L. Fedrick, J. Spoor, R. Symes, M. Tieppo, C. Collins, A. Cao, D. Markwell, K.K. Ostrikov, K. BazakaMetallic biomaterials: current challenges and opportunities, materials (Basel, Switzerland)10 (2017), p. 884 View PDFCrossRefView Record in ScopusGoogle Scholar[24]A.J. Salgado, O.P. Coutinho, R.L. ReisBone tissue engineering: state of the art and future trendsMacromol. Biosci., 4 (2004), pp. 743-765 View PDFView Record in ScopusGoogle Scholar[25]P.H. Grewe, D. Thomas, A. Machraoui, J. Barmeyer, K.M. MullerCoronary morphologic findings after stent implantationAm. J. Cardiol., 85 (2000), pp. 554-558ArticleDownload PDFView Record in ScopusGoogle Scholar[26]D. Buccheri, D. Piraino, G. Andolina, B. CorteseUnderstanding and managing in-stent restenosis: a review of clinical data, from pathogenesis to treatmentJ. Thorac. Dis., 8 (2016), pp. E1150-E1162 View PDFCrossRefView Record in ScopusGoogle Scholar[27]B.J. Luthringer, F. Feyerabend, R. Willumeit-RomerMagnesium-based implants: a mini-reviewMagnes. Res., 27 (2014), pp. 142-154View Record in ScopusGoogle Scholar[28]M. Geetha, A.K. Singh, R. Asokamani, A.K. GogiaTi based biomaterials, the ultimate choice for orthopaedic implants – a reviewProg. Mater. Sci., 54 (2009), pp. 397-425ArticleDownload PDFGoogle Scholar[29]I. GotmanCharacteristics of metals used in implantsJ. Endourol., 11 (1997), pp. 383-389 View PDFCrossRefView Record in ScopusGoogle Scholar[30]M. Long, H.J. RackTitanium alloys in total joint replacement—a materials science perspectiveBiomaterials, 19 (1998), pp. 1621-1639ArticleDownload PDFGoogle Scholar[31]H.J. Rack, J.I. QaziTitanium alloys for biomedical applicationsMater. Sci. Eng. C, 26 (2006), pp. 1269-1277ArticleDownload PDFView Record in ScopusGoogle Scholar[32]C.Y. Guo, J.P. Matinlinna, A.T.H. TangEffects of surface charges on dental implants: past, present, and futureInt. J. Biomater., 2012 (2012), p. 5Google Scholar[33]L.S. Rhoads, W.T. Silkworth, M.L. Roppolo, M.S. WhittinghamCytotoxicity of nanostructured vanadium oxide on human cells in vitroToxicol. in Vitro, 24 (2010), pp. 292-296ArticleDownload PDFView Record in ScopusGoogle Scholar[34]S.V. Verstraeten, L. Aimo, P.I. OteizaAluminium and lead: molecular mechanisms of brain toxicityArch. Toxicol., 82 (2008), pp. 789-802 View PDFCrossRefView Record in ScopusGoogle Scholar[35]D.V. Gunderov, A.V. Polyakov, I.P. Semenova, G.I. Raab, A.A. Churakova, E.I. Gimaltdinova, I. Sabirov, J. Segurado, V.D. Sitdikov, I.V. Alexandrov, N.A. Enikeev, R.Z. ValievEvolution of microstructure, macrotexture and mechanical properties of commercially pure Ti during ECAP-conform processing and drawingMater. Sci. Eng. A, 562 (2013), pp. 128-136ArticleDownload PDFView Record in ScopusGoogle Scholar[36]Y. Estrin, C. Kasper, S. Diederichs, R. LapovokAccelerated growth of preosteoblastic cells on ultrafine grained titaniumJ. Biomed. Mater. Res. A, 90 (2009), pp. 1239-1242 View PDFCrossRefView Record in ScopusGoogle Scholar[37]E. Matykina, R. Arrabal, R.Z. Valiev, J.M. Molina-Aldareguia, P. Belov, I. SabirovElectrochemical anisotropy of nanostructured titanium for biomedical implantsElectrochim. Acta, 176 (2015), pp. 1221-1232ArticleDownload PDFView Record in ScopusGoogle Scholar[38]M. NiinomiRecent metallic materials for biomedical applicationsMetall. Mater. Trans. A, 33 (2002), p. 477 View PDFCrossRefGoogle Scholar[39]Y. Li, H. Jahr, J. Zhou, A.A. ZadpoorAdditively manufactured biodegradable porous metalsActa Biomater., 115 (2020), pp. 29-50ArticleDownload PDFGoogle Scholar[40]F. Witte, J. Fischer, J. Nellesen, H.A. Crostack, V. Kaese, A. Pisch, F. Beckmann, H. WindhagenIn vitro and in vivo corrosion measurements of magnesium alloysBiomaterials, 27 (2006), pp. 1013-1018ArticleDownload PDFView Record in ScopusGoogle Scholar[41]F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth, H. WindhagenIn vivo corrosion of four magnesium alloys and the associated bone responseBiomaterials, 26 (2005), pp. 3557-3563ArticleDownload PDFView Record in ScopusGoogle Scholar[42]N.T. Kirkland, N. BirbilisMagnesium Biomaterials: Design, Testing, and Best PracticeSpringer (2014)Google Scholar[43]Y.F. Zheng, X.N. Gu, F. WitteBiodegradable metalsMater. Sci. Eng. R. Rep., 77 (2014), pp. 1-34ArticleDownload PDFCrossRefGoogle Scholar[44]E.D. McBrideAbsorbable metal in bone surgery: a further report on the use of magnesium alloysJ. Am. Med. Assoc., 111 (1938), pp. 2464-2467 View PDFCrossRefView Record in ScopusGoogle Scholar[45]F. Witte, N. Hort, C. Vogt, S. Cohen, K.U. Kainer, R. Willumeit, F. FeyerabendDegradable biomaterials based on magnesium corrosionCurr. Opinion Solid State Mater. Sci., 12 (2008), pp. 63-72ArticleDownload PDFView Record in ScopusGoogle Scholar[46]T. OkumaMagnesium and bone strengthNutrition, 17 (2001), pp. 679-680ArticleDownload PDFView Record in ScopusGoogle Scholar[47]R.W. Li, N.T. Kirkland, J. Truong, J. Wang, P.N. Smith, N. Birbilis, D.R. NisbetThe influence of biodegradable magnesium alloys on the osteogenic differentiation of human mesenchymal stem cellsJ. Biomed. Mater. Res. A, 102 (2014), pp. 4346-4357 View PDFView Record in ScopusGoogle Scholar[48]A. HartwigRole of magnesium in genomic stabilityMutat. Res. Fundam. Mol. Mech. Mutagen., 475 (2001), pp. 113-121ArticleDownload PDFGoogle Scholar[49]S. Kamrani, C. FleckBiodegradable magnesium alloys as temporary orthopaedic implants: a reviewBiometals, 32 (2019), pp. 185-193 View PDFCrossRefView Record in ScopusGoogle Scholar[50]J. Walker, S. Shadanbaz, T.B. Woodfield, M.P. Staiger, G.J. DiasMagnesium biomaterials for orthopedic application: a review from a biological perspectiveJ Biomed Mater Res B Appl Biomater, 102 (2014), pp. 1316-1331 View PDFCrossRefView Record in ScopusGoogle Scholar[51]M. Peron, J. Torgersen, F. BertoMg and its alloys for biomedical applications: exploring corrosion and its interplay with mechanical failureMetals, 7 (2017), p. 252 View PDFCrossRefView Record in ScopusGoogle Scholar[52]G. Song, S. SongA possible biodegradable magnesium implant materialAdv. Eng. Mater., 9 (2007), pp. 298-302 View PDFCrossRefView Record in ScopusGoogle Scholar[53]S. Gonzalez, E. Pellicer, S. Suriach, M.D. Bar, J. SortBiodegradation and Mechanical Integrity of Magnesium and Magnesium Alloys Suitable for ImplantsInTech (2013)Google Scholar[54]L.J. Liu, M. SchlesingerCorrosion of magnesium and its alloysCorros. Sci., 51 (2009), pp. 1733-1737ArticleDownload PDFView Record in ScopusGoogle Scholar[55]W.F. Ng, K.Y. Chiu, F.T. ChengEffect of pH on the in vitro corrosion rate of magnesium degradable implant materialMater. Sci. Eng., C, 30 (2010), pp. 898-903ArticleDownload PDFView Record in ScopusGoogle Scholar[56]B. Zberg, P. Uggowitzer, J. LöfflerTowards a new generation of biodegradable implants: MgZnCa glasses without hydrogen evolutionNat. Mater., 8 (2009), pp. 887-891 View PDFCrossRefView Record in ScopusGoogle Scholar[57]M.-S. Song, R.-C. Zeng, Y.-F. Ding, R.W. Li, M. Easton, I. Cole, N. Birbilis, X.-B. ChenRecent advances in biodegradation controls over Mg alloys for bone fracture management: a reviewJ. Mater. Sci. Technol., 35 (2019), pp. 535-544ArticleDownload PDFView Record in ScopusGoogle Scholar[58]Y.H. Bouchi, B.D. GogasBiocorrodible metals for coronary revascularization: lessons from PROGRESS-AMS, BIOSOLVE-I, and BIOSOLVE-IIGlob. Cardiol. Sci. Pract., 2015 (2015), p. 63 View PDFCrossRefGoogle Scholar[59]N.T. Kirkland, M.P. Staiger, D. Nisbet, C.H.J. Davies, N. BirbilisPerformance-driven design of biocompatible Mg alloysJOM, 63 (2011), pp. 28-34 View PDFCrossRefView Record in ScopusGoogle Scholar[60]X.B. Chen, N.T. Kirkland, H. Krebs, M.A. Thiriat, S. Virtanen, D. Nisbet, N. BirbilisIn vitro corrosion survey of Mg–xCa and Mg–3Zn–yCa alloys with and without calcium phosphate conversion coatingsCorros. Eng. Sci. Technol., 47 (2013), pp. 365-373Google Scholar[61]Z. Li, X. Gu, S. Lou, Y. ZhengThe development of binary Mg-Ca alloys for use as biodegradable materials within boneBiomaterials, 29 (2008), pp. 1329-1344ArticleDownload PDFView Record in ScopusGoogle Scholar[62]X.B. Chen, N. Birbilis, T.B. AbbottA simple route towards a hydroxyapatite–Mg(OH)2 conversion coating for magnesiumCorros. Sci., 53 (2011), pp. 2263-2268ArticleDownload PDFView Record in ScopusGoogle Scholar[63]X.B. Chen, N. Birbilis, T.B. AbbottEffect of [Ca2+] and [PO43-] levels on the formation of calcium phosphate conversion coatings on die-cast magnesium alloy AZ91DCorros. Sci., 55 (2012), pp. 226-232ArticleDownload PDFView Record in ScopusGoogle Scholar[64]R. Rojaee, M. Fathi, K. RaeissiControlling the degradation rate of AZ91 magnesium alloy via sol–gel derived nanostructured hydroxyapatite coatingMater. Sci. Eng., C, 33 (2013), pp. 3817-3825ArticleDownload PDFView Record in ScopusGoogle Scholar[65]R.-C. Zeng, L.-y Cui, K. Jiang, R. Liu, B.-D. Zhao, Y.-F. ZhengIn vitro corrosion and cytocompatibility of a microarc oxidation coating and poly(l-lactic acid) composite coating on Mg–1Li–1Ca alloy for orthopedic implantsACS Appl. Mater. Interfaces, 8 (2016), pp. 10014-10028 View PDFCrossRefView Record in ScopusGoogle Scholar[66]L.-Y. Cui, S.-D. Gao, P.-P. Li, R.-C. Zeng, F. Zhang, S.-Q. Li, E.-H. HanCorrosion resistance of a self-healing micro-arc oxidation/polymethyltrimethoxysilane composite coating on magnesium alloy AZ31Corros. Sci., 118 (2017), pp. 84-95ArticleDownload PDFView Record in ScopusGoogle Scholar[67]L. Zhang, J. Zhang, C.-F. Chen, Y. GuAdvances in microarc oxidation coated AZ31 Mg alloys for biomedical applicationsCorros. Sci., 91 (2015), pp. 7-28ArticleDownload PDFCrossRefGoogle Scholar[68]E. Matykina, R. Arrabal, M. Mohedano, A. Pardo, M.C. Merino, E. RiveroStability of plasma electrolytic oxidation coating on titanium in artificial salivaJ. Mater. Sci. Mater. Med., 24 (2013), pp. 37-51 View PDFCrossRefView Record in ScopusGoogle Scholar[69]A. Santos-Coquillat, R. Gonzalez Tenorio, M. Mohedano, E. Martinez-Campos, R. Arrabal, E. MatykinaTailoring of antibacterial and osteogenic properties of Ti6Al4V by plasma electrolytic oxidationAppl. Surf. Sci., 454 (2018), pp. 157-172ArticleDownload PDFView Record in ScopusGoogle Scholar[70]Y. Chen, Z. Xu, C. Smith, J. SankarRecent advances on the development of magnesium alloys for biodegradable implantsActa Biomater., 10 (2014), pp. 4561-4573ArticleDownload PDFGoogle Scholar[71]M. Peuster, C. Hesse, T. Schloo, C. Fink, P. Beerbaum, C. von SchnakenburgLong-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aortaBiomaterials, 27 (2006), pp. 4955-4962ArticleDownload PDFView Record in ScopusGoogle Scholar[72]D. Vojtěch, J. Kubásek, J. Serák, P. NovákMechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixationActa Biomater., 7 (2011), pp. 3515-3522ArticleDownload PDFView Record in ScopusGoogle Scholar[73]H. Kabir, K. Munir, C. Wen, Y. LiRecent research and progress of biodegradable zinc alloys and composites for biomedical applications: biomechanical and biocorrosion perspectivesBioact. Mater., 6 (2021), pp. 836-879ArticleDownload PDFView Record in ScopusGoogle Scholar[74]G. Lütjering, J.C. WilliamsTechnological aspectsG. Lütjering, J.C. Williams (Eds.), Titanium, Springer, Berlin Heidelberg, Berlin, Heidelberg (2007), pp. 53-173View Record in ScopusGoogle Scholar[75]I. Sabirov, N.A. Enikeev, M.Y. Murashkin, R.Z. ValievNanostructures in materials subjected to severe plastic deformationI. Sabirov, N.A. Enikeev, M.Y. Murashkin, R.Z. Valiev (Eds.), Bulk Nanostructured Materials with Multifunctional Properties, Springer International Publishing, Cham (2015), pp. 11-26 View PDFCrossRefView Record in ScopusGoogle Scholar[76]D.D. Gu, W. Meiners, K. Wissenbach, R. PopraweLaser additive manufacturing of metallic components: materials, processes and mechanismsInt. Mater. Rev., 57 (2013), pp. 133-164Google Scholar[77]D. Herzog, V. Seyda, E. Wycisk, C. EmmelmannAdditive manufacturing of metalsActa Mater., 117 (2016), pp. 371-392ArticleDownload PDFView Record in ScopusGoogle Scholar[78]T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. ZhangAdditive manufacturing of metallic components – process, structure and propertiesProg. Mater. Sci., 92 (2018), pp. 112-224ArticleDownload PDFView Record in ScopusGoogle Scholar[79]S.Y. Liu, Y.C. ShinAdditive manufacturing of Ti6Al4V alloy: a reviewMater. Des., 164 (2019), p. 23Google Scholar[80]R. Karunakaran, S. Ortgies, A. Tamayol, F. Bobaru, M.P. SealyAdditive manufacturing of magnesium alloysBioact. Mater., 5 (2020), pp. 44-54ArticleDownload PDFView Record in ScopusGoogle Scholar[81]N.E. Putra, M.J. Mirzaali, I. Apachitei, J. Zhou, A.A. ZadpoorMulti-material additive manufacturing technologies for Ti-, Mg-, and Fe-based biomaterials for bone substitutionActa Biomater., 109 (2020), pp. 1-20ArticleDownload PDFView Record in ScopusGoogle Scholar[82]F. Li, J. Li, H. Kou, G. Xu, T. Li, L. ZhouAnisotropic porous titanium with superior mechanical compatibility in the range of physiological strain rate for trabecular bone implant applicationsMater. Lett., 137 (2014), pp. 424-427ArticleDownload PDFView Record in ScopusGoogle Scholar[83]F. Li, J. Li, H. Kou, L. ZhouPorous Ti6Al4V alloys with enhanced normalized fatigue strength for biomedical applicationsMater. Sci. Eng., C, 60 (2016), pp. 485-488ArticleDownload PDFView Record in ScopusGoogle Scholar[84]F. Li, J. Li, T. Huang, H. Kou, L. ZhouCompression fatigue behavior and failure mechanism of porous titanium for biomedical applicationsJ. Mech. Behav. Biomed. Mater., 65 (2017), pp. 814-823ArticleDownload PDFView Record in ScopusGoogle Scholar[85]R. Wauthle, S.M. Ahmadi, S. Amin Yavari, M. Mulier, A.A. Zadpoor, H. Weinans, J. Van Humbeeck, J.-P. Kruth, J. SchrootenRevival of pure titanium for dynamically loaded porous implants using additive manufacturingMater. Sci. Eng., C, 54 (2015), pp. 94-100ArticleDownload PDFView Record in ScopusGoogle Scholar[86]W. Xu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu, K. Latham, K. Xia, M. QianAdditive manufacturing of strong and ductile Ti–6Al–4V by selective laser melting via in situ martensite decompositionActa Mater., 85 (2015), pp. 74-84ArticleDownload PDFView Record in ScopusGoogle Scholar[87]F.S.L. Bobbert, A.A. ZadpoorEffects of bone substitute architecture and surface properties on cell response, angiogenesis, and structure of new boneJ. Mater. Chem. B, 5 (2017), pp. 6175-6192 View PDFCrossRefView Record in ScopusGoogle Scholar[88]X.-Y. Zhang, G. Fang, S. Leeflang, A.A. Zadpoor, J. ZhouTopological design, permeability and mechanical behavior of additively manufactured functionally graded porous metallic biomaterialsActa Biomater., 84 (2019), pp. 437-452ArticleDownload PDFGoogle Scholar[89]I.A.J. van Hengel, N.E. Putra, M. Tierolf, M. Minneboo, A.C. Fluit, L.E. Fratila-Apachitei, I. Apachitei, A.A. ZadpoorBiofunctionalization of selective laser melted porous titanium using silver and zinc nanoparticles to prevent infections by antibiotic-resistant bacteriaActa Biomater., 107 (2020), pp. 325-337Google Scholar[90]Z.G. Karaji, R. Hedayati, B. Pouran, I. Apachitei, A.A. ZadpoorEffects of plasma electrolytic oxidation process on the mechanical properties of additively manufactured porous biomaterialsMater. Sci. Eng. C Mater. Biol. Appl., 76 (2017), pp. 406-416Google Scholar[91]L.E. Murr, K.N. Amato, S.J. Li, Y.X. Tian, X.Y. Cheng, S.M. Gaytan, E. Martinez, P.W. Shindo, F. Medina, R.B. WickerMicrostructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam meltingJ. Mech. Behav. Biomed. Mater., 4 (2011), pp. 1396-1411ArticleDownload PDFView Record in ScopusGoogle Scholar[92]S.J. Li, L.E. Murr, X.Y. Cheng, Z.B. Zhang, Y.L. Hao, R. Yang, F. Medina, R.B. WickerCompression fatigue behavior of Ti–6Al–4V mesh arrays fabricated by electron beam meltingActa Mater., 60 (2012), pp. 793-802ArticleDownload PDFView Record in ScopusGoogle Scholar[93]J. Sun, Y. Yang, D. WangMechanical properties of a Ti6Al4V porous structure produced by selective laser meltingMater. Des., 49 (2013), pp. 545-552ArticleDownload PDFView Record in ScopusGoogle Scholar[94]R. Yan, D. Luo, H. Huang, R. Li, N. Yu, C. Liu, M. Hu, Q. RongElectron beam melting in the fabrication of three-dimensional mesh titanium mandibular prosthesis scaffoldSci. Rep., 8 (2018)Google Scholar[95]H.R. Cho, T.S. Roh, K.W. Shim, Y.O. Kim, D.H. Lew, I.S. YunSkull reconstruction with custom made three-dimensional titanium implantArch. Craniofac. Surg., 16 (2015), p. 11ArticleDownload PDFGoogle Scholar[96]E.-K. Park, J.-Y. Lim, I.-S. Yun, J.-S. Kim, S.-H. Woo, D.-S. Kim, K.-W. ShimCranioplasty enhanced by three-dimensional printing: custom-made three-dimensional-printed titanium implants for skull defectsArch. Craniofac. Surg., 27 (2016), pp. 943-949View Record in ScopusGoogle Scholar[97]K.S. Hamid, S.G. Parekh, S.B. AdamsSalvage of severe foot and ankle trauma with a 3D printed scaffoldFoot Ankle Int., 37 (2016), pp. 433-439 View PDFCrossRefView Record in ScopusGoogle Scholar[98]Y. Qin, P. Wen, H. Guo, D. Xia, Y. Zheng, L. Jauer, R. Poprawe, M. Voshage, J.H. SchleifenbaumAdditive manufacturing of biodegradable metals: current research status and future perspectivesActa Biomater., 98 (2019), pp. 3-22ArticleDownload PDFGoogle Scholar[99]T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, D. HuiAdditive manufacturing (3D printing): a review of materials, methods, applications and challengesCompos. Part B, 143 (2018), pp. 172-196ArticleDownload PDFView Record in ScopusGoogle Scholar[100]I. Gibson, D.W. Rosen, B. StuckerAdditive Manufacturing TechnologiesSpringer (2014)Google Scholar[101]W.E. FrazierMetal additive manufacturing: a reviewJ. Mater. Eng. Perform., 23 (2014), pp. 1917-1928 View PDFCrossRefView Record in ScopusGoogle Scholar[102]ASTM, F2792-12aStandard Terminology for Additive Manufacturing TechnologiesASTM International, West Conshohocken (2012)Google Scholar[103]B. Wysocki, P. Maj, R. Sitek, J. Buhagiar, K.J. Kurzydlowski, W. SwieszkowskiLaser and electron beam additive manufacturing methods of fabricating titanium bone implantsAppl. Sci.-Basel, 7 (2017)Google Scholar[104]Y.L. Hao, S.J. Li, R. YangBiomedical titanium alloys and their additive manufacturingRare Metals, 35 (2016), pp. 661-671 View PDFCrossRefView Record in ScopusGoogle Scholar[105]T.S. Jang, D. Kim, G. Han, C.B. Yoon, H.D. JungPowder based additive manufacturing for biomedical application of titanium and its alloys: a reviewBiomed. Eng. Lett., 10 (2020), pp. 505-516 View PDFCrossRefView Record in ScopusGoogle Scholar[106]H. Attar, S. Ehtemam-Haghighi, N. Soro, D. Kent, M.S. DarguschAdditive manufacturing of low-cost porous titanium-based composites for biomedical applications: advantages, challenges and opinion for future developmentJ. Alloys Compd., 827 (2020)Google Scholar[107]Z.A. Mierzejewska, R. Hudak, J. SidunMechanical properties and microstructure of DMLS Ti6Al4V alloy dedicated to biomedical applicationsMaterials, 12 (2019)Google Scholar[108]N.A.W. Dai, L.C. Zhang, J.X. Zhang, X. Zhang, Q.Z. Ni, Y. Chen, M.L. Wu, C. YangDistinction in corrosion resistance of selective laser melted Ti-6Al-4V alloy on different planesCorros. Sci., 111 (2016), pp. 703-710ArticleDownload PDFView Record in ScopusGoogle Scholar[109]G. Sander, J. Tan, P. Balan, O. Gharbi, D.R. Feenstra, L. Singer, S. Thomas, R.G. Kelly, J.R. Scully, N. BirbilisCorrosion of additively manufactured alloys: a reviewCorrosion, 74 (2018), pp. 1318-1350 View PDFCrossRefView Record in ScopusGoogle Scholar[110]G. Kasperovich, J. HausmannImprovement of fatigue resistance and ductility of TiAl6V4 processed by selective laser meltingJ. Mater. Process. Technol., 220 (2015), pp. 202-214ArticleDownload PDFView Record in ScopusGoogle Scholar[111]J.J. Yang, H.C. Yu, J. Yin, M. Gao, Z.M. Wang, X.Y. ZengFormation and control of martensite in Ti-6Al-4V alloy produced by selective laser meltingMater. Des., 108 (2016), pp. 308-318ArticleDownload PDFView Record in ScopusGoogle Scholar[112]Y. Zhai, H. Galarraga, D.A. LadosMicrostructure, static properties, and fatigue crack growth mechanisms in Ti-6Al-4V fabricated by additive manufacturing: LENS and EBMEng. Fail. Anal., 69 (2016), pp. 3-14ArticleDownload PDFView Record in ScopusGoogle Scholar[113]D.I. Seo, J.B. LeeInfluence of heat treatment parameters on the corrosion resistance of additively manufactured Ti-6Al-4V alloyJ. Electrochem. Soc., 167 (2020)Google Scholar[114]A. Acquesta, T. MonettaAs-built EBM and DMLS Ti-6Al-4V parts: topography-corrosion resistance relationship in a simulated body fluidMetals, 10 (2020)Google Scholar[115]S. Cecchel, D. Ferrario, G. Cornacchia, M. GelfiDevelopment of heat treatments for selective laser melting Ti6Al4V alloy: effect on microstructure, Mechanical properties, and corrosion resistanceAdv. Eng. Mater., 22 (2020)Google Scholar[116]J. Fojt, V. Hybasek, Z. Kacenka, E. PruchovaInfluence of surface finishing on corrosion behaviour of 3D printed TiAlV alloyMetals, 10 (2020)Google Scholar[117]L.Y. Chen, J.C. Huang, C.H. Lin, C.T. Pan, S.Y. Chen, T.L. Yang, D.Y. Lin, H.K. Lin, J.S.C. JangAnisotropic response of Ti-6Al-4V alloy fabricated by 3D printing selective laser meltingMater. Sci. Eng. A, 682 (2017), pp. 389-395ArticleDownload PDFView Record in ScopusGoogle Scholar[118]C.H. Qian, H.Z. Xu, Q. ZhongThe influence of process parameters on corrosion behavior of Ti6Al4V alloy processed by selective laser meltingJ. Laser Appl., 32 (2020)Google Scholar[119]T.M. Chiu, M. Mahmoudi, W. Dai, A. Elwany, H. Liang, H. CastanedaCorrosion assessment of Ti-6Al-4V fabricated using laser powder-bed fusion additive manufacturingElectrochim. Acta, 279 (2018), pp. 143-151ArticleDownload PDFView Record in ScopusGoogle Scholar[120]X.W. Yang, X.R. Dong, W.Y. Li, W.Y. Feng, Y.X. XuEffect of solution and aging treatments on corrosion performance of laser solid formed Ti-6Al-4V alloy in a 3.5 wt.% NaCl solutionJ. Mater. Res. Technol., 9 (2020), pp. 1559-1568ArticleDownload PDFView Record in ScopusGoogle Scholar[121]N.W. Dai, L.C. Zhang, J.X. Zhang, Q.M. Chen, M.L. WuCorrosion behavior of selective laser melted Ti-6Al-4V alloy in NaCl solutionCorros. Sci., 102 (2016), pp. 484-489ArticleDownload PDFView Record in ScopusGoogle Scholar[122]Y. Xiao, N.W. Dai, Y. Chen, J.X. Zhang, S.W. ChoiOn the microstructure and corrosion behaviors of selective laser melted CP-Ti and Ti-6Al-4V alloy in Hank's artificial body fluidMater. Res. Express, 6 (2019)Google Scholar[123]B. Zhao, H. Wang, N. Qiao, C. Wang, M. HuCorrosion resistance characteristics of a Ti-6Al-4V alloy scaffold that is fabricated by electron beam melting and selective laser melting for implantation in vivoMater. Sci. Eng., C, 70 (2017), pp. 832-841ArticleDownload PDFView Record in ScopusGoogle Scholar[124]Y.Z. Xu, Y. Lu, K.L. Sundberg, J.Y. Liang, R.D. SissonEffect of annealing treatments on the microstructure, mechanical properties and corrosion behavior of direct metal laser sintered Ti-6Al-4VJ. Mater. Eng. Perform., 26 (2017), pp. 2572-2582 View PDFCrossRefView Record in ScopusGoogle Scholar[125]X. Gai, Y. Bai, J. Li, S. Li, W. Hou, Y. Hao, X. Zhang, R. Yang, R.D.K. MisraElectrochemical behaviour of passive film formed on the surface of Ti-6Al-4V alloys fabricated by electron beam meltingCorros. Sci., 145 (2018), pp. 80-89ArticleDownload PDFView Record in ScopusGoogle Scholar[126]J.J. Yang, H.H. Yang, H.C. Yu, Z.M. Wang, X.Y. ZengCorrosion behavior of additive manufactured Ti-6Al-4V alloy in NaCl solutionMetall. Mater. Trans. A Phys. Metall. Mater. Sci., 48A (2017), pp. 3583-3593 View PDFCrossRefView Record in ScopusGoogle Scholar[127]Y. Li, H. Jahr, J. Zhou, A.A. ZadpoorAdditively manufactured biodegradable porous metalsActa Biomater., 115 (2020), pp. 29-50ArticleDownload PDFGoogle Scholar[128]S. Liu, H. GuoA review of SLMed magnesium alloys: processing, properties, alloying elements and postprocessingMetals, 10 (2020)Google Scholar[129]K. Wei, Z. Wang, X. ZengInfluence of element vaporization on formability, composition, microstructure, and mechanical performance of the selective laser melted Mg–Zn–Zr componentsMater. Lett., 156 (2015), pp. 187-190ArticleDownload PDFView Record in ScopusGoogle Scholar[130]M. Salehi, S. Maleksaeedi, H. Farnoush, M.L.S. Nai, G.K. Meenashisundaram, M. GuptaAn investigation into interaction between magnesium powder and Ar gas: implications for selective laser melting of magnesiumPowder Technol., 333 (2018), pp. 252-261ArticleDownload PDFView Record in ScopusGoogle Scholar[131]J. Guo, Y. Zhou, C. Liu, Q. Wu, X. Chen, J. LuWire arc additive manufacturing of AZ31 magnesium alloy: grain refinement by adjusting pulse frequencyMaterials, 9 (2016), p. 823 View PDFCrossRefView Record in ScopusGoogle Scholar[132]X. Wang, C. Chen, M. ZhangEffect of laser power on formability, microstructure and mechanical properties of selective laser melted Mg-Al-Zn alloyRapid Prototyp. J., 26 (2020), pp. 841-854 View PDFCrossRefView Record in ScopusGoogle Scholar[133]J. Suchy, M. Horynova, L. Klakurkova, D. Palousek, D. Koutny, L. CelkoEffect of laser parameters on processing of biodegradable magnesium alloy WE43 via selective laser melting methodMaterials (Basel), 13 (2020)Google Scholar[134]K. Wei, M. Gao, Z. Wang, X. ZengEffect of energy input on formability, microstructure and mechanical properties of selective laser melted AZ91D magnesium alloyMater. Sci. Eng. A, 611 (2014), pp. 212-222ArticleDownload PDFView Record in ScopusGoogle Scholar[135]F. Bär, L. Berger, L. Jauer, G. Kurtuldu, R. Schäublin, J.H. Schleifenbaum, J.F. LöfflerLaser additive manufacturing of biodegradable magnesium alloy WE43: a detailed microstructure analysisActa Biomater., 98 (2019), pp. 36-49ArticleDownload PDFView Record in ScopusGoogle Scholar[136]C.C. Ng, M.M. Savalani, H.C. Man, I. GibsonLayer manufacturing of magnesium and its alloy structures for future applicationsVirtual and Physical Prototyping, 5 (2010), pp. 13-19 View PDFCrossRefView Record in ScopusGoogle Scholar[137]M. Savalani Monica, M. Pizarro JorgeEffect of preheat and layer thickness on selective laser melting (SLM) of magnesiumRapid Prototyp. J., 22 (2016), pp. 115-122Google Scholar[138]H. Hu, X. Liu, C. DingPreparation and in vitro evaluation of nanostructured TiO2/TCP composite coating by plasma electrolytic oxidationJ. Alloys Compd., 498 (2010), pp. 172-178ArticleDownload PDFView Record in ScopusGoogle Scholar[139]C. Liu, M. Zhang, C. ChenEffect of laser processing parameters on porosity, microstructure and mechanical properties of porous Mg-Ca alloys produced by laser additive manufacturingMater. Sci. Eng. A, 703 (2017), pp. 359-371ArticleDownload PDFGoogle Scholar[140]K. Wei, X. Zeng, Z. Wang, J. Deng, M. Liu, G. Huang, X. YuanSelective laser melting of Mg-Zn binary alloys: effects of Zn content on densification behavior, microstructure, and mechanical propertyMater. Sci. Eng. A, 756 (2019), pp. 226-236ArticleDownload PDFView Record in ScopusGoogle Scholar[141]Y. Zhou, P. Wu, Y. Yang, D. Gao, P. Feng, C. Gao, H. Wu, Y. Liu, H. Bian, C. ShuaiThe microstructure, mechanical properties and degradation behavior of laser-melted Mg Sn alloysJ. Alloys Compd., 687 (2016), pp. 109-114ArticleDownload PDFView Record in ScopusGoogle Scholar[142]D. Zhang, D. Qiu, S. Zhu, M. Dargusch, D. StJohn, M. EastonGrain refinement in laser remelted Mg-3Nd-1Gd-0.5Zr alloyScr. Mater., 183 (2020), pp. 12-16ArticleDownload PDFCrossRefGoogle Scholar[143]Y. Yin, Q. Huang, L. Liang, X. Hu, T. Liu, Y. Weng, T. Long, Y. Liu, Q. Li, S. Zhou, H. WuIn vitro degradation behavior and cytocompatibility of ZK30/bioactive glass composites fabricated by selective laser melting for biomedical applicationsJ. Alloys Compd., 785 (2019), pp. 38-45ArticleDownload PDFView Record in ScopusGoogle Scholar[144]Y. Yang, C. Lu, S. Peng, L. Shen, D. Wang, F. Qi, C. ShuaiLaser additive manufacturing of Mg-based composite with improved degradation behaviourVirtual and Physical Prototyping, 15 (2020), pp. 278-293 View PDFCrossRefGoogle Scholar[145]K. Wei, X. Zeng, Z. Wang, J. Deng, M. Liu, G. Huang, X. YuanSelective laser melting of Mg-Zn binary alloys: effects of Zn content on densification behavior, microstructure, and mechanical propertyMater. Sci. Eng. A, 756 (2019), pp. 226-236ArticleDownload PDFView Record in ScopusGoogle Scholar[146]X. Niu, H. Shen, J. Fu, J. Yan, Y. WangCorrosion behaviour of laser powder bed fused bulk pure magnesium in hank’s solutionCorros. Sci., 157 (2019), pp. 284-294ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar[147]A. Wichelhaus, J. Emmerich, T. MittlmeierA case of implant failure in partial wrist fusion applying magnesium-based headless bone screwsCase Rep. Orthop., 2016 (2016), Article 7049130View Record in ScopusGoogle Scholar[148]C. Plaass, C. von Falck, S. Ettinger, L. Sonnow, F. Calderone, A. Weizbauer, J. Reifenrath, L. Claassen, H. Waizy, K. Daniilidis, C. Stukenborg-Colsman, H. WindhagenBioabsorbable magnesium versus standard titanium compression screws for fixation of distal metatarsal osteotomies – 3 year results of a randomized clinical trialJ. Orthop. Sci., 23 (2018), pp. 321-327ArticleDownload PDFView Record in ScopusGoogle Scholar[149]Y. Li, J. Zhou, P. Pavanram, M.A. Leeflang, L.I. Fockaert, B. Pouran, N. Tümer, K.U. Schröder, J.M.C. Mol, H. Weinans, H. Jahr, A.A. ZadpoorAdditively manufactured biodegradable porous magnesiumActa Biomater., 67 (2018), pp. 378-392ArticleDownload PDFView Record in ScopusGoogle Scholar[150]M. Li, F. Benn, T. Derra, N. Kroger, M. Zinser, R. Smeets, J.M. Molina-Aldareguia, A. Kopp, J. L.LMicrostructure, mechanical properties, corrosion resistance and cytocompatibility of WE43 mg alloy scaffolds fabricated by laser powder bed fusion for biomedical applicationsMater. Sci. Eng. C Mater. Biol. Appl., 119 (2021), Article 111623ArticleDownload PDFView Record in ScopusGoogle Scholar[151]Y. Li, H. Jahr, X.Y. Zhang, M.A. Leeflang, W. Li, B. Pouran, F.D. Tichelaar, H. Weinans, J. Zhou, A.A. ZadpoorBiodegradation-affected fatigue behavior of additively manufactured porous magnesiumAddit. Manuf., 28 (2019), pp. 299-311ArticleDownload PDFView Record in ScopusGoogle Scholar[152]N. Wegner, D. Kotzem, Y. Wessarges, N. Emminghaus, C. Hoff, J. Tenkamp, J. Hermsdorf, L. Overmeyer, F. WaltherCorrosion and corrosion fatigue properties of additively manufactured magnesium alloy WE43 in comparison to titanium alloy Ti-6Al-4V in physiological environmentMaterials (Basel), 12 (2019)Google Scholar[153]A. Kopp, T. Derra, M. Muther, L. Jauer, J.H. Schleifenbaum, M. Voshage, O. Jung, R. Smeets, N. KrogerInfluence of design and postprocessing parameters on the degradation behavior and mechanical properties of additively manufactured magnesium scaffoldsActa Biomater., 98 (2019), pp. 23-35ArticleDownload PDFView Record in ScopusGoogle Scholar[154]M. Wolff, J. Schaper, M. Suckert, M. Dahms, F. Feyerabend, T. Ebel, R. Willumeit-Römer, T. KlassenMetal injection molding (MIM) of magnesium and its alloysMetals, 6 (2016), p. 118 View PDFCrossRefView Record in ScopusGoogle Scholar[155]M. Wolff, T. Mesterknecht, A. Bals, T. Ebel, R. Willumeit-RömerFFF of Mg-Alloys for Biomedical Application, Magnesium Technology 2019Springer (2019), pp. 43-49 View PDFCrossRefView Record in ScopusGoogle Scholar[156]M. Salehi, S. Maleksaeedi, M.L.S. Nai, M. GuptaTowards additive manufacturing of magnesium alloys through integration of binderless 3D printing and rapid microwave sinteringAddit. Manuf., 29 (2019)Google Scholar[157]M. Salehi, S. Maleksaeedi, M.A.B. Sapari, M.L.S. Nai, G.K. Meenashisundaram, M. GuptaAdditive manufacturing of magnesium–zinc–zirconium (ZK) alloys via capillary-mediated binderless three-dimensional printingMater. Des., 169 (2019)Google Scholar[158]E. Marin, M. Pressacco, S. Fusi, A. Lanzutti, S. Turchet, L. FedrizziCharacterization of grade 2 commercially pure trabecular titanium structuresMater. Sci. Eng., C, 33 (2013), pp. 2648-2656ArticleDownload PDFView Record in ScopusGoogle Scholar[159]A. Nouri, C. Wen1 - Introduction to surface coating and modification for metallic biomaterialsC. Wen (Ed.), Surface Coating and Modification of Metallic Biomaterials, Woodhead Publishing (2015), pp. 3-60ArticleDownload PDFView Record in ScopusGoogle Scholar[160]R.I.M. Asri, W.S.W. Harun, M. Samykano, N.A.C. Lah, S.A.C. Ghani, F. Tarlochan, M.R. RazaCorrosion and surface modification on biocompatible metals: a reviewMater. Sci. Eng., C, 77 (2017), pp. 1261-1274ArticleDownload PDFView Record in ScopusGoogle Scholar[161]G. Manivasagam, D. Dhinasekaran, A. RajamanickamBiomedical implants: corrosion and its prevention - a reviewRecent Patents on Corrosion Science, 2 (2010), pp. 40-54 View PDFCrossRefGoogle Scholar[162]A. Bekmurzayeva, W.J. Duncanson, H.S. Azevedo, D. KanayevaSurface modification of stainless steel for biomedical applications: revisiting a century-old materialMater. Sci. Eng., C, 93 (2018), pp. 1073-1089ArticleDownload PDFView Record in ScopusGoogle Scholar[163]B. Lohberger, N. Eck, D. Glaenzer, H. Lichtenegger, L. Ploszczanski, A. LeithnerCobalt chromium molybdenum surface modifications alter the osteogenic differentiation potential of human mesenchymal stem cellsMaterials, 13 (2020), p. 4292 View PDFCrossRefView Record in ScopusGoogle Scholar[164]J.M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, P. SchmukiTiO2 nanotubes: self-organized electrochemical formation, properties and applicationsCurr. Opinion Solid State Mater. Sci., 11 (2007), pp. 3-18ArticleDownload PDFGoogle Scholar[165]I.S. Luke YeoModifications of dental implant surfaces at the microand nano-level for enhanced osseointegrationMaterials, 13 (2020), p. 89View Record in ScopusGoogle Scholar[166]R. Imani, M. Pazoki, A. IgličTiO2 nanostructured materials: synthesis and applicationsHandbook of Functional Nanomaterials (2013), pp. 309-335View Record in ScopusGoogle Scholar[167]K. Von Der Mark, J. Park, S. Bauer, P. SchmukiNanoscale engineering of biomimetic surfaces: cues from the extracellular matrixCell Tissue Res., 339 (2010), pp. 131-153Google Scholar[168]K. SubramaniTitanium surface modification techniques for implant fabrication - from microscale to the nanoscaleJ. Biomimetics Biomater. Tissue Eng., 5 (2010), pp. 39-56View Record in ScopusGoogle Scholar[169]L. Zhao, P.K. Chu, Y. Zhang, Z. WuAntibacterial coatings on titanium implantsJ. Biomed. Mater. Res. B Appl. Biomater., 91 (2009), pp. 470-480 View PDFCrossRefView Record in ScopusGoogle Scholar[170]F. Wang, C. Li, S. Zhang, H. LiuRole of TiO2 nanotubes on the surface of implants in osseointegration in animal models: a systematic review and meta-analysisJ. Prosthodont., 29 (2020), pp. 501-510 View PDFCrossRefView Record in ScopusGoogle Scholar[171]R. Ion, M.G. Necula, A. Mazare, V. Mitran, P. Neacsu, P. Schmuki, A. CimpeanDrug delivery systems based on titania nanotubes and active agents for enhanced osseointegration of bone implantsCurr. Med. Chem., 27 (2020), pp. 854-902 View PDFCrossRefView Record in ScopusGoogle Scholar[172]K. Subramani, W. Ahmed, P. PachauriTitanium nanotubes as carriers of osteogenic growth factors and antibacterial drugs for applications in dental implantologyEmerging Nanotechnologies in Dentistry (Second edition) (2018), pp. 125-136ArticleDownload PDFView Record in ScopusGoogle Scholar[173]E.P. Su, D.F. Justin, C.R. Pratt, V.K. Sarin, V.S. Nguyen, S. Oh, S. JinEffects of titanium nanotubes on the osseointegration, cell differentiation, mineralisation and antibacterial properties of orthopaedic implant surfacesBone Joint J., 100B (2018), pp. 9-16View Record in ScopusGoogle Scholar[174]Q. Wang, J.Y. Huang, H.Q. Li, A.Z.J. Zhao, Y. Wang, K.Q. Zhang, H.T. Sun, Y.K. LaiRecent advances on smart TiO2 nanotube platforms for sustainable drug delivery applicationsInt. J. Nanomedicine, 12 (2017), pp. 151-165Google Scholar[175]A.R. Ribeiro, S. Gemini-Piperni, S.A. Alves, J.M. Granjeiro, L.A. RochaTitanium dioxide nanoparticles and nanotubular surfaces: potential applications in nanomedicineMetal. Nanopart. Pharma. (2017), pp. 101-121 View PDFCrossRefView Record in ScopusGoogle Scholar[176]K. Gulati, S. IvanovskiDental implants modified with drug releasing titania nanotubes: therapeutic potential and developmental challengesExpert Opin. Drug Deliv., 14 (2017), pp. 1009-1024 View PDFCrossRefView Record in ScopusGoogle Scholar[177]N.K. Awad, S.L. Edwards, Y.S. MorsiA review of TiO2 NTs on Ti metal: electrochemical synthesis, functionalization and potential use as bone implantsMater. Sci. Eng. C, 76 (2017), pp. 1401-1412ArticleDownload PDFView Record in ScopusGoogle Scholar[178]H.C. Li, Z. MaResearch process of the effect of titanium dioxide nanotubes on peri-implant cellsChin. J. Tissue Eng. Res., 20 (2016), pp. 7899-7904View Record in ScopusGoogle Scholar[179]D. Khudhair, A. Bhatti, Y. Li, H.A. Hamedani, H. Garmestani, P. Hodgson, S. NahavandiAnodization parameters influencing the morphology and electrical properties of TiO2 nanotubes for living cell interfacing and investigationsMater. Sci. Eng. C, 59 (2016), pp. 1125-1142ArticleDownload PDFView Record in ScopusGoogle Scholar[180]J. Huang, K. Zhang, Y. LaiRecent advances in synthesis, modification, and applications of TiO2 nanotube arrays by electrochemical anodizationHandbook of Nanoelectrochemistry: Electrochemical Synthesis Methods, Properties, and Characterization Techniques (2016), pp. 1379-1416 View PDFCrossRefView Record in ScopusGoogle Scholar[181]M. Kulkarni, A. Mazare, E. Gongadze, Š. Perutkova, V. Kralj-Iglic, I. Milošev, P. Schmuki, A. Iglič, M. MozetičTitanium nanostructures for biomedical applicationsNanotechnology, 26 (2015)Google Scholar[182]A.F. Cipriano, C. Miller, H. LiuAnodic growth and biomedical applications of TiO2 nanotubesJ. Biomed. Nanotechnol., 10 (2014), pp. 2977-3003 View PDFCrossRefView Record in ScopusGoogle Scholar[183]S. Minagar, J. Wang, C.C. Berndt, E.P. Ivanova, C. WenCell response of anodized nanotubes on titanium and titanium alloysJ. Biomed. Mater. Res. A, 101 A (2013), pp. 2726-2739 View PDFCrossRefView Record in ScopusGoogle Scholar[184]C.J. Frandsen, K.S. Brammer, S. JinVariations to the nanotube surface for bone regenerationInt. J. Biomater., 2013 (2013)Google Scholar[185]K.S. Brammer, S. Oh, C.J. Frandsen, S. JinTiO2 nanotube structures for enhanced cell and biological functionalityJOM, 62 (2010), pp. 50-55 View PDFCrossRefView Record in ScopusGoogle Scholar[186]E. Matykina, A. Conde, J. de Damborenea, D.M.Y. Marero, M.A. ArenasGrowth of TiO2-based nanotubes on Ti–6Al–4V alloyElectrochim. Acta, 56 (2011), pp. 9209-9218ArticleDownload PDFView Record in ScopusGoogle Scholar[187]Y. Fu, A. MoA review on the electrochemically self-organized titania nanotube arrays: synthesis, modifications, and biomedical applicationsNanoscale Res. Lett., 13 (2018), p. 187 View PDFView Record in ScopusGoogle Scholar[188]C.-M. Han, E.-J. Lee, H.-E. Kim, Y.-H. Koh, J.-H. JangPorous TiO2 films on Ti implants for controlled release of tetracycline-hydrochloride (TCH)Thin Solid Films, 519 (2011), pp. 8074-8076ArticleDownload PDFView Record in ScopusGoogle Scholar[189]J.M. Macak, P. SchmukiAnodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytesElectrochim. Acta, 52 (2006), pp. 1258-1264ArticleDownload PDFView Record in ScopusGoogle Scholar[190]C. Pérez-Jorge, A. Conde, M.A. Arenas, R. Pérez-Tanoira, E. Matykina, J.J. De Damborenea, E. Gómez-Barrena, J. EstebanIn vitro assessment of Staphylococcus epidermidis and Staphylococcus aureus adhesion on TiO2 nanotubes on Ti-6Al-4V alloyJ. Biomed. Mater. Res. A, 100 A (2012), pp. 1696-1705 View PDFCrossRefView Record in ScopusGoogle Scholar[191]C. Pérez-Jorge Peremarch, R. Pérez Tanoira, M.A. Arenas, E. Matykina, A. Conde, J.J. de Damborenea, E. Gómez Barrena, J. EstebanBacterial adherence to anodized titanium alloyJ. Phys. Conf. Ser., 252 (2010), p. 012011 View PDFCrossRefView Record in ScopusGoogle Scholar[192]N.K. Allam, K. Shankarb, C.A. GrimesPhotoelectrochemical and water photoelectrolysis properties of ordered TiO2 nanotubes fabricated by Ti anodization in fluoride-free HCl electrolytesJ. Mater. Chem., 18 (2008), pp. 2341-2348 View PDFCrossRefView Record in ScopusGoogle Scholar[193]A. Roguska, A. Belcarz, P. Suchecki, M. Andrzejczuk, M. Lewandows KaAntibacterial composite layers on Ti: role of ZnO nanoparticlesArch. Metall. Mater., 61 (2016), pp. 213-216 View PDFCrossRefView Record in ScopusGoogle Scholar[194]U.F. Gunputh, H. Le, K. Lawton, A. Besinis, C. Tredwin, R.D. HandyAntibacterial properties of silver nanoparticles grown in situ and anchored to titanium dioxide nanotubes on titanium implant against Staphylococcus aureusNanotoxicology, 14 (2020), pp. 97-110 View PDFCrossRefView Record in ScopusGoogle Scholar[195]C. Pan, T. Liu, Y. Yang, T. Liu, Z. Gong, Y. Wei, L. Quan, Z. Yang, S. LiuIncorporation of Sr2+ and Ag nanoparticles into TiO2 nanotubes to synergistically enhance osteogenic and antibacterial activities for bone repairMater. Des., 196 (2020)Google Scholar[196]D. Ding, C. Ning, L. Huang, F. Jin, Y. Hao, S. Bai, Y. Li, M. Li, D. MaoAnodic fabrication and bioactivity of Nb-doped TiO2 nanotubesNanotechnology, 20 (2009)Google Scholar[197]Z.J. Guo, P. Hu, Y.B. Li, B. Zhou, L.J. Wang, L. ZhangFabrication of pH-sensitive membrane on Ag-loaded titania nanotube and its antibacterial propertiesChinese J. Inorg. Chem., 30 (2014), pp. 1299-1304View Record in ScopusGoogle Scholar[198]L. Zhao, H. Wang, K. Huo, L. Cui, W. Zhang, H. Ni, Y. Zhang, Z. Wu, P.K. ChuAntibacterial nano-structured titania coating incorporated with silver nanoparticlesBiomaterials, 32 (2011), pp. 5706-5716ArticleDownload PDFView Record in ScopusGoogle Scholar[199]X. Chen, K. Cai, J. Fang, M. Lai, J. Li, Y. Hou, Z. Luo, Y. Hu, L. TangDual action antibacterial TiO2 nanotubes incorporated with silver nanoparticles and coated with a quaternary ammonium salt (QAS)Surf. Coat. Technol., 216 (2013), pp. 158-165ArticleDownload PDFView Record in ScopusGoogle Scholar[200]S. Mei, H. Wang, W. Wang, L. Tong, H. Pan, C. Ruan, Q. Ma, M. Liu, H. Yang, L. Zhang, Y. Cheng, Y. Zhang, L. Zhao, P.K. ChuAntibacterial effects and biocompatibility of titanium surfaces with graded silver incorporation in titania nanotubesBiomaterials, 35 (2014), pp. 4255-4265ArticleDownload PDFView Record in ScopusGoogle Scholar[201]N. Esfandiari, A. Simchi, R. BagheriSize tuning of Ag-decorated TiO2 nanotube arrays for improved bactericidal capacity of orthopedic implantsJ. Biomed. Mater. Res. A, 102 (2014), pp. 2625-2635 View PDFCrossRefView Record in ScopusGoogle Scholar[202]M.Y. Lan, S.L. Lee, H.H. Huang, P.F. Chen, C.P. Liu, S.W. LeeDiameter selective behavior of human nasal epithelial cell on Ag-coated TiO2 nanotubesCeram. Int., 40 (2014), pp. 4745-4751ArticleDownload PDFView Record in ScopusGoogle Scholar[203]B. Li, J. Hao, Y. Min, S. Xin, L. Guo, F. He, C. Liang, H. Wang, H. LiBiological properties of nanostructured Ti incorporated with Ca, P and Ag by electrochemical methodMater. Sci. Eng. C, 51 (2015), pp. 80-86ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar[204]L. Zhang, L. Zhang, Y. Yang, W. Zhang, H. Lv, F. Yang, C. Lin, P. TangInhibitory effect of super-hydrophobicity on silver release and antibacterial properties of super-hydrophobic Ag/TiO2 nanotubesJ. Biomed. Mater. Res. B Appl. Biomater., 104 (2016), pp. 1004-1012 View PDFCrossRefView Record in ScopusGoogle Scholar[205]A. Roguska, M. Pisarek, M. Andrzejczuk, M. Lewandowska, K.J. Kurzydlowski, M. Janik-CzachorSurface characterization of Ca-P/Ag/TiO2 nanotube composite layers on Ti intended for biomedical applicationsJ. Biomed. Mater. Res. A, 100 A (2012), pp. 1954-1962 View PDFCrossRefView Record in ScopusGoogle Scholar[206]Y. Bai, Y. Bai, C. Wang, J. Gao, W. MaFabrication and characterization of gold nanoparticle-loaded TiO2 nanotube arrays for medical implantsJ. Mater. Sci. Mater. Med., 27 (2016), pp. 1-11Google Scholar[207]M.P. Neupane, I.S. Park, T.S. Bae, H.K. Yi, M. Uo, F. Watari, M.H. LeeTitania nanotubes supported gelatin stabilized gold nanoparticles for medical implantsJ. Mater. Chem., 21 (2011), pp. 12078-12082 View PDFCrossRefView Record in ScopusGoogle Scholar[208]T. Yang, S. Qian, Y. Qiao, X. LiuCytocompatibility and antibacterial activity of titania nanotubes incorporated with gold nanoparticlesColloids Surf. B: Biointerfaces, 145 (2016), pp. 597-606ArticleDownload PDFView Record in ScopusGoogle Scholar[209]J. Rosenbaum, D.L. Versace, S. Abbad-Andallousi, R. Pires, C. Azevedo, P. Cénédese, P. DubotAntibacterial properties of nanostructured Cu-TiO2 surfaces for dental implantsBiomater. Sci., 5 (2017), pp. 455-462View Record in ScopusGoogle Scholar[210]K. Indira, U. Kamachi Mudali, N. RajendranIn vitro bioactivity and corrosion resistance of Zr incorporated TiO 2 nanotube arrays for orthopaedic applicationsAppl. Surf. Sci., 316 (2014), pp. 264-275ArticleDownload PDFView Record in ScopusGoogle Scholar[211]K. Indira, U.K. Mudali, N. RajendranIn-vitro biocompatibility and corrosion resistance of strontium incorporated TiO2 nanotube arrays for orthopaedic applicationsJ. Biomater. Appl., 29 (2014), pp. 113-129 View PDFCrossRefView Record in ScopusGoogle Scholar[212]W. Liu, S. Chen, Z. Zhang, T.J. WebsterAntibacterial properties of TiO2 nanotubes incorporated with ZnOProceedings of the IEEE Annual Northeast Bioengineering Conference, NEBEC (2014)Google Scholar[213]B. Chen, Y. You, A. Ma, Y. Song, J. Jiao, L. Song, E. Shi, X. Zhong, Y. Li, C. LiZn-incorporated TiO2 nanotube surface improves osteogenesis ability through influencing immunomodulatory function of macrophagesInt. J. Nanomedicine, 15 (2020), pp. 2095-2118 View PDFCrossRefView Record in ScopusGoogle Scholar[214]X. Qiao, J. Yang, Y. Shang, S. Deng, S. Yao, Z. Wang, Y. Guo, C. PengMagnesium-doped nanostructured titanium surface modulates macrophage-mediated inflammatory response for ameliorative osseointegrationInt. J. Nanomedicine, 15 (2020), pp. 7185-7198 View PDFCrossRefView Record in ScopusGoogle Scholar[215]L. Bai, R. Wu, Y. Wang, X. Wang, X. Zhang, X. Huang, L. Qin, R. Hang, L. Zhao, B. TangOsteogenic and angiogenic activities of silicon-incorporated TiO2 nanotube arraysJ. Mater. Chem. B, 4 (2016), pp. 5548-5559 View PDFCrossRefView Record in ScopusGoogle Scholar[216]X. Zhao, T. Wang, S. Qian, X. Liu, J. Sun, B. LiSilicon-doped titanium dioxide nanotubes promoted bone formation on titanium implantsInt. J. Mol. Sci., 17 (2016)Google Scholar[217]G. Li, Q.M. Zhao, L. Cheng, H.L. YangSelenium-doped titanium dioxide nanotubes show promise as corrosion-resistant bone-implant materialMater. Perform., 55 (2016), pp. 32-35View Record in ScopusGoogle Scholar[218]Y.H. Jeong, E.J. Kim, W.A. Brantley, H.C. ChoeMorphology of hydroxyapatite nanoparticles in coatings on nanotube-formed Ti-Nb-Zr alloys for dental implantsVacuum, 107 (2014), pp. 297-303ArticleDownload PDFView Record in ScopusGoogle Scholar[219]S. Swain, T.R. Rautray, R. NarayananSr, Mg, and Co substituted hydroxyapatite coating on TiO2 nanotubes formed by electrochemical methodsAdv. Sci. Lett., 22 (2016), pp. 482-487 View PDFCrossRefView Record in ScopusGoogle Scholar[220]S.A. Alves, S.B. Patel, C. Sukotjo, M.T. Mathew, P.N. Filho, J.P. Celis, L.A. Rocha, T. ShokuhfarSynthesis of calcium-phosphorous doped TiO2 nanotubes by anodization and reverse polarization: a promising strategy for an efficient biofunctional implant surfaceAppl. Surf. Sci., 399 (2017), pp. 682-701ArticleDownload PDFView Record in ScopusGoogle Scholar[221]H. Liu, X. Huang, H. Yu, X. Yang, X. Zhang, R. Hang, B. TangA cytocompatible micro/nano-textured surface with Si-doped titania mesoporous arrays fabricated by a one-step anodizationMater. Sci. Eng. C, 73 (2017), pp. 120-129ArticleDownload PDFGoogle Scholar[222]X. Zhang, X. Zhang, B. Wang, J. Lan, H. Yang, Z. Wang, X. Chang, S. Wang, X. Ma, H. Qiao, H. Lin, S. Han, Y. HuangSynergistic effects of lanthanum and strontium to enhance the osteogenic activity of TiO2 nanotube biological interfaceCeram. Int., 46 (2020), pp. 13969-13979ArticleDownload PDFView Record in ScopusGoogle Scholar[223]W. Liu, P. Su, S. Chen, N. Wang, J. Wang, Y. Liu, Y. Ma, H. Li, Z. Zhang, T.J. WebsterAntibacterial and osteogenic stem cell differentiation properties of photoinduced TiO2 nanoparticle-decorated TiO2 nanotubesNanomedicine, 10 (2015), pp. 713-723 View PDFCrossRefView Record in ScopusGoogle Scholar[224]W. Liu, P. Su, A. Gonzales, S. Chen, N. Wang, J. Wang, H. Li, Z. Zhang, T.J. WebsterOptimizing stem cell functions and antibacterial properties of TiO2 nanotubes incorporated with ZnO nanoparticles: experiments and modelingInt. J. Nanomedicine, 10 (2015), pp. 1997-2019 View PDFView Record in ScopusGoogle Scholar[225]A. Roguska, A. Belcarz, M. Pisarek, G. Ginalska, M. LewandowskaTiO2 nanotube composite layers as delivery system for ZnO and Ag nanoparticles - an unexpected overdose effect decreasing their antibacterial efficacyMater. Sci. Eng. C, 51 (2015), pp. 158-166ArticleDownload PDFView Record in ScopusGoogle Scholar[226]Y. Wang, D. Zhang, C. Wen, Y. LiProcessing and characterization of SrTiO3-TiO2 nanoparticle-nanotube heterostructures on titanium for biomedical applicationsACS Appl. Mater. Interfaces, 7 (2015), pp. 16018-16026 View PDFCrossRefView Record in ScopusGoogle Scholar[227]A.L. Yerokhin, X. Nie, A. Leyland, A. MatthewsCharacterisation of oxide films produced by plasma electrolytic oxidation of a Ti–6Al–4V alloySurf. Coat. Technol., 130 (2000), pp. 195-206ArticleDownload PDFView Record in ScopusGoogle Scholar[228]A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. DoweyPlasma electrolysis for surface engineeringSurf. Coat. Technol., 122 (1999), pp. 73-93ArticleDownload PDFGoogle Scholar[229]E. Matykina, I. Garcia, R. Arrabal, M. Mohedano, B. Mingo, J. Sancho, M.C. Merino, A. PardoRole of PEO coatings in long-term biodegradation of a Mg alloyAppl. Surf. Sci., 389 (2016), pp. 810-823ArticleDownload PDFView Record in ScopusGoogle Scholar[230]P. Pesode, S. Barve, Surface modification of titanium and titanium alloy by plasma electrolytic oxidation process for biomedical applications: a review, Mater. Today: Proceedings, DOI https://doi.org/10.1016/j.matpr.2020.11.294(2020).Google Scholar[231]Z. Huan, L.E. Fratila-Apachitei, I. Apachitei, J. DuszczykPorous TiO₂ surface formed on nickel-titanium alloy by plasma electrolytic oxidation: a prospective polymer-free reservoir for drug eluting stent applicationsJ Biomed Mater Res B Appl Biomater, 101 (2013), pp. 700-708 View PDFCrossRefView Record in ScopusGoogle Scholar[232]T.S. Narayanan, I.S. Park, M.H. LeeStrategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: prospects and challengesProg. Mater. Sci., 60 (2014), pp. 1-71View Record in ScopusGoogle Scholar[233]C. Blawert, P.B. SrinivasanPlasma electrolytic oxidation treatment of magnesium alloysSurface Engineering of Light Alloys, Elsevier (2010), pp. 155-183ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar[234]O. Galvis, D. Quintero, J. Castaño, H. Liu, G. Thompson, P. Skeldon, F. EcheverríaFormation of grooved and porous coatings on titanium by plasma electrolytic oxidation in H2SO4/H3PO4 electrolytes and effects of coating morphology on adhesive bondingSurf. Coat. Technol., 269 (2015), pp. 238-249ArticleDownload PDFView Record in ScopusGoogle Scholar[235]A. Kazek-Kęsik, K. Kuna, W. Dec, M. Widziołek, G. Tylko, A.M. Osyczka, W. SimkaIn vitro bioactivity investigations of Ti-15 M o alloy after electrochemical surface modificationJ. Biomed. Mater. Res. B Appl. Biomater., 104 (2016), pp. 903-913 View PDFCrossRefView Record in ScopusGoogle Scholar[236]P. Whiteside, E. Matykina, J.E. Gough, P. Skeldon, G.E. ThompsonIn vitro evaluation of cell proliferation and collagen synthesis on titanium following plasma electrolytic oxidationJ. Biomed. Mater. Res. A, 94 (2010), pp. 38-46 View PDFCrossRefView Record in ScopusGoogle Scholar[237]A. Santos-Coquillat, M. Esteban-Lucia, E. Martinez-Campos, M. Mohedano, R. Arrabal, C. Blawert, M.L. Zheludkevich, E. MatykinaPEO coatings design for Mg-Ca alloy for cardiovascular stent and bone regeneration applicationsMater. Sci. Eng., C, 105 (2019), Article 110026ArticleDownload PDFView Record in ScopusGoogle Scholar[238]A. Santos-Coquillat, E. Martínez-Campos, M. Mohedano, R. Martínez-Corriá, V. Ramos, R. Arrabal, E. MatykinaIn vitro and in vivo evaluation of PEO-modified titanium for bone implant applicationsSurf. Coat. Technol., 347 (2018), pp. 358-368ArticleDownload PDFView Record in ScopusGoogle Scholar[239]A. Fattah-alhosseini, M. Molaei, N. Attarzadeh, K. Babaei, F. AttarzadehOn the enhanced antibacterial activity of plasma electrolytic oxidation (PEO) coatings that incorporate particles: a reviewCeram. Int., 46 (2020), pp. 20587-20607ArticleDownload PDFView Record in ScopusGoogle Scholar[240]M. Kaseem, S. Fatimah, N. Nashrah, Y.G. KoRecent progress in surface modification of metals coated by plasma electrolytic oxidation: principle, structure, and performanceProg. Mater. Sci., 117 (2021), Article 100735ArticleDownload PDFView Record in ScopusGoogle Scholar[241]P.-O. Östman, M. Hellman, L. Sennerby, Ten Years LaterResults from a prospective single-centre clinical study on 121 oxidized (TiUniteTM) Brånemark implants in 46 patientsClin. Implant. Dent. Relat. Res., 14 (2012), pp. 852-860 View PDFCrossRefView Record in ScopusGoogle Scholar[242]T. Albrektsson, A. WennerbergOn osseointegration in relation to implant surfacesClin. Implant. Dent. Relat. Res., 21 (2019), pp. 4-7 View PDFCrossRefView Record in ScopusGoogle Scholar[243]O. Banakh, L. Snizhko, T. Journot, P.-A. Gay, C. Csefalvay, O. Kalinichenko, O. Girin, L. Marger, S. DurualThe influence of the electrolyte nature and PEO process parameters on properties of anodized Ti-15Mo alloy intended for biomedical applicationsMetals, 8 (2018), p. 370 View PDFCrossRefView Record in ScopusGoogle Scholar[244]J.M. Cordeiro, B.E. Nagay, A.L.R. Ribeiro, N.C. da Cruz, E.C. Rangel, L.M.G. Fais, L.G. Vaz, V.A.R. BarãoFunctionalization of an experimental Ti-Nb-Zr-Ta alloy with a biomimetic coating produced by plasma electrolytic oxidationJ. Alloys Compd., 770 (2019), pp. 1038-1048ArticleDownload PDFView Record in ScopusGoogle Scholar[245]L. Xu, C. Wu, X. Lei, K. Zhang, C. Liu, J. Ding, X. ShiEffect of oxidation time on cytocompatibility of ultrafine-grained pure Ti in micro-arc oxidation treatmentSurf. Coat. Technol., 342 (2018), pp. 12-22ArticleDownload PDFCrossRefGoogle Scholar[246]Z.Q. Yao, Y. Ivanisenko, T. Diemant, A. Caron, A. Chuvilin, J.Z. Jiang, R.Z. Valiev, M. Qi, H.J. FechtSynthesis and properties of hydroxyapatite-containing porous titania coating on ultrafine-grained titanium by micro-arc oxidationActa Biomater., 6 (2010), pp. 2816-2825ArticleDownload PDFView Record in ScopusGoogle Scholar[247]I.A.J. van Hengel, M. Riool, L.E. Fratila-Apachitei, J. Witte-Bouma, E. Farrell, A.A. Zadpoor, S.A.J. Zaat, I. ApachiteiData on the surface morphology of additively manufactured Ti-6Al-4V implants during processing by plasma electrolytic oxidationData Brief, 13 (2017), pp. 385-389Google Scholar[248]V. Malinovschi, A. Marin, V. Andrei, E. Coaca, C.N. Mihailescu, C.P. Lungu, C. Radulescu, I.D. DulamaObtaining and characterization of PEO layers prepared on CP-Ti in sodium dihydrogen phosphate dihydrate acidic electrolyte solutionSurf. Coat. Technol., 375 (2019), pp. 621-636ArticleDownload PDFView Record in ScopusGoogle Scholar[249]A.R. Rafieerad, M.R. Ashra, R. Mahmoodian, A.R. BushroaSurface characterization and corrosion behavior of calcium phosphate-base composite layer on titanium and its alloys via plasma electrolytic oxidation: a review paperMater. Sci. Eng., C, 57 (2015), pp. 397-413ArticleDownload PDFView Record in ScopusGoogle Scholar[250]F. Songur, B. Dikici, M. Niinomi, E. ArslanThe plasma electrolytic oxidation (PEO) coatings to enhance in-vitro corrosion resistance of Ti–29Nb–13Ta–4.6Zr alloys: the combined effect of duty cycle and the deposition frequencySurf. Coat. Technol., 374 (2019), pp. 345-354ArticleDownload PDFView Record in ScopusGoogle Scholar[251]M. Qadir, Y. Li, K. Munir, C. WenCalcium phosphate-based composite coating by micro-arc oxidation (MAO) for biomedical application: a reviewCrit. Rev. Solid State Mater. Sci., 43 (2018), pp. 392-416 View PDFCrossRefView Record in ScopusGoogle Scholar[252]S. Abbasi, F. Golestani-Fard, S.M.M. Mirhosseini, A. Ziaee, M. MehrjooEffect of electrolyte concentration on microstructure and properties of micro arc oxidized hydroxyapatite/titania nanostructured compositeMater. Sci. Eng., C, 33 (2013), pp. 2555-2561ArticleDownload PDFView Record in ScopusGoogle Scholar[253]S. Abbasi, F. Golestani-Fard, H.R. Rezaie, S.M.M. Mirhosseini, A. ZiaeeMAO-derived hydroxyapatite–TiO2 nanostructured bio-ceramic films on titaniumMater. Res. Bull., 47 (2012), pp. 3407-3412ArticleDownload PDFView Record in ScopusGoogle Scholar[254]M.B. KannanElectrochemical deposition of calcium phosphates on magnesium and its alloys for improved biodegradation performance: a reviewSurf. Coat. Technol., 301 (2016), pp. 36-41ArticleDownload PDFView Record in ScopusGoogle Scholar[255]D. Dzhurinskiy, Y. Gao, W.K. Yeung, E. Strumban, V. Leshchinsky, P.J. Chu, A. Matthews, A. Yerokhin, R.G. MaevCharacterization and corrosion evaluation of TiO2:n-HA coatings on titanium alloy formed by plasma electrolytic oxidationSurf. Coat. Technol., 269 (2015), pp. 258-265ArticleDownload PDFView Record in ScopusGoogle Scholar[256]W.K. Yeung, I.V. Sukhorukova, D.V. Shtansky, E.A. Levashov, I.Y. Zhitnyak, N.A. Gloushankova, P.V. NO Ministerio de Ciencia e Innovación (MICINN)/FEDER NO Comunidad de Madrid NO Ministerio de Ciencia e Innovación (MICINN) NO Instituto de Salud Carlos III (ISCIII) DS Docta Complutense RD 7 may 2024