%0 Journal Article %A Cuadra Mendoza, Isaac Alfonso %A Cabañas Poveda, Albertina %A Rodríguez Cheda, José Antonio %A Türk, MIchael %A Pando García-Pumarino, Concepción %T Cocrystallization of the anticancer drug 5-fluorouracil and coformers urea, thiourea or pyrazinamide using supercritical CO2 as an antisolvent (SAS) and as a solvent (CSS) %D 2020 %@ 0896-8446 %U https://hdl.handle.net/20.500.14352/93480 %X Co-crystals of 5-fluorouracil (5-Fu) and the coformers urea, thiourea and pyrazinamide (PZA) were attempted for the first time through the supercritical antisolvent (SAS) and the cocrystallization with supercritical solvent (CSS) techniques. SAS operational conditions were temperature (313 K), pressure (7.0–15.0 MPa) and 5-Fu concentration in methanol (5 and 2.5 mg/mL). Coformer concentration was always in the desired stoichiometric ratio. Co-crystals were characterized using powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Pure 5-Fu-urea cocrystals were obtained via SAS at 313 K and 8.0 MPa using a 5 mg/mL 5-Fu solution. All other SAS conditions studied led to 5-Fu homocrystal impurities. For comparison purposes 5-Fu, urea and thiourea were also processed by SAS. CSS produced a mixture of co-crystals and homocrystals only when supercritical CO2 was modified with methanol. Advantages and disadvantages of the two supercritical cocrystallization techniques are discussed. %~