RT Journal Article T1 On the numerical solution to a parabolic-elliptic system with chemotactic and periodic terms using Generalized Finite Differences A1 Benito, J.J. A1 García, A. A1 Gavete, L. A1 Negreanu Pruna, Mihaela A1 Ureña, F. A1 Vargas, A. M. AB In the present paper we propose the Generalized Finite Difference Method (GFDM) for numerical solution of a cross-diffusion system with chemotactic terms. We derive the discretization of the system using a GFD scheme in order to prove and illustrate that the uniform stability behavior/ convergence of the continuous model is also preserved for the discrete model. We prove the convergence of the explicit method and give the conditions of convergence. Extensive numerical experiments are presented to illustrate the accuracy, efficiency and robustness of the GFDM. PB Elsevier SN 09557997 YR 2020 FD 2020-04 LK https://hdl.handle.net/20.500.14352/7731 UL https://hdl.handle.net/20.500.14352/7731 LA eng NO Ministerio de Ciencia e Innovación (MICINN) NO Universidad Nacional de Educación a Distancia (UNED) NO Universidad Politécnica de Madrid (UPM) DS Docta Complutense RD 29 abr 2025