RT Journal Article T1 Strongly consistent autoregressive predictors in abstract Banach spaces A1 Ruiz Medina, María Dolores A1 Álvarez Liébana, Javier A2 Von Rosen, Dietrich AB This work derives new results on strong consistent estimation and prediction for autoregressive processes of order 1 in a separable Banach space B. The consistency results are obtained for the component-wise estimator of the autocorrelation operator in the norm of the space L(B) of bounded linear operators on B. The strong consistency of the associated plug-in predictor then follows in the B-norm. A Gelfand triple is defined through the Hilbert space constructed in Kuelbs’ lemma (Kuelbs, 1970). A Hilbert–Schmidt embedding introduces the Reproducing Kernel Hilbert space (RKHS), generated by the autocovariance operator, into the Hilbert space conforming the Rigged Hilbert space structure. This paper extends the work of Bosq (2000) and Labbas and Mourid (2002). PB Elsevier SN 0047-259X YR 2018 FD 2018 LK https://hdl.handle.net/20.500.14352/95141 UL https://hdl.handle.net/20.500.14352/95141 LA eng NO Ruiz-Medina, M. D.; Álvarez-Liébana, J. Strongly consistent autoregressive predictors in abstract Banach spaces. Journal of Multivariate Analysis 2019, 170, 186–201. doi:10.1016/j.jmva.2018.08.001. NO Supplementary Material to "Strongly-consistent autoregressive predictors in abstract Banach spaces":https://ars-els-cdn-com.bucm.idm.oclc.org/content/image/1-s2.0-S0047259X17307248-mmc1.pdf NO Ministerio de Economía, Comercio y Empresa (España) DS Docta Complutense RD 8 abr 2025