RT Journal Article T1 Frequency analysis of the dielectric constant of YBa2Cu3O7 Josephson junctions fabricated on bicrystalline substrates A1 Lucía Mulas, María Luisa A1 Sánchez Quesada, Francisco AB We have studied the electromagnetic parameters of YBa2Cu3O7 Josephson junctions fabricated on bicrystalline substrates with different angles tilted around the [100] and [001] axis. Changing a technological parameter such as the junction width permits change to the resonant frequency of the barrier cavity. This change in the resonance frequency allows one to determine a frequency dependent dispersion relation of the dielectric constant epsilon(omega). We have explored the proximity to a resonance in the dielectric response and analyzed its resonance frequency and damping constant. In terms of a RLC circuital equivalence additional information on the inductive response is presented as a comparative study of junctions fabricated on substrates with different bicrystalline misorientations. PB American Physical Society SN 1098-0121 YR 2006 FD 2006-07 LK https://hdl.handle.net/20.500.14352/51240 UL https://hdl.handle.net/20.500.14352/51240 LA eng NO 1) D. Dimos, P. Chaudhari, and J. Mannhart, Phys. Rev. B, 41, 4038 (1990).2) U. Poppe, Y. Y. Divin, M. I. Faley, J. S. Wu, C. L. Jia, P. M. Shadrin, and K. Urban, IEEE Trans. Appl. Supercond., 11, 3768 (2001).3) Y. Y. Divin, U. Poppe, C. L. Jia, P. M. Shadrin, and K. Urban, Physica C, 372–376, 115 (2002).4) M. A. Navacerrada, M. L. Lucía, L. L. Sánchez-Soto, F. Sánchez-Quesada, E. Sarnelli, and G. Testa, Phys. Rev. B, 71, 014501 (2005).5) M. A. Navacerrada, M. L. Lucía, L. L. Sánchez-Soto, F. Sánchez-Quesada, E. Sarnelli, and G. Testa, IEEE Trans. Appl. Supercond., 15, 169 (2005).6) D. Winkler, Y. M. Zhang, P. A. Nilsson, E. A. Stepantsov, and T. Claeson, Phys. Rev. Lett., 72, 1260 (1994).7) J. H. T. Ransley, P. F. McBrien, G. Burnell, E. J. Tarte, J. E. Evetts, R. R. Schulz, C. W. Schneider, A. Schmehl, H. Bielefeldt, H. Hilgenkamp, and J. Mannhart, Phys. Rev. B, 70, 104502 (2004).8) E. J. Tarte, P. F. McBrien, J. H. T. Ransley, R. H. Hadfield, E. I. Inglessi, W. E. Booji, G. Burnell, and J. E. Evetts, IEEE Trans. Appl. Supercond., 11, 418 (2001).9) M. D. Fiske, Rev. Mod. Phys., 36, 221 (1964).10) M. A. Navacerrada, M. L. Lucía, and F. Sánchez-Quesada, Phys. Rev. B, 61, 6422 (2000).11) M. A. Navacerrada, M. L. Lucía, and F. Sánchez-Quesada, Europhys. Lett., 54, 387 (2001).12) A. Barone and G. Paterno, Physics and Applications of the Josephson Effect (Wiley, New York, 1982).13) D. E. McCumber, J. Appl. Phys., 39, 3133 (1968).14) R. C. Neville, B. Hoeneisen, and C. A. Mead, J. Appl. Phys., 43, 2124 (1972).15) H. Zappe, J. Appl. Phys., 44, 137 (1972).16) H. Frohlich, Theory of Dielectrics (Oxford University Press, New York, 1968).17) J. W. Seo, B. Kabius, U. Dähne, A. Scholen, and K. Urban, Physica C, 245, 25 (1995).18) H. Hilgenkamp and J. Mannhart, IEEE Trans. Appl. Supercond., 9, 3405 (1999).19) E. Sarnelli, G. Testa, D. Crimaldi, A. Monaco, and M. A. Navacerrada, Supercond. Sci. Technol., 18, L35–39 (2005).20) E. Sarnelli, G. Testa, D. Grimaldi, A. Monaco, M. Adamo, and M. A. Navacerrada, IEEE Trans. Appl. Supercond., 15, 245 (2005). NO © The American Physical Society. This work was supported by the CICYT Grant No. BMF2001-1419, the ESF Network “Phi-shift,” the project DG236RIC “NDA” and the TRN “DeQUACS.” NO CICYT NO ESF Network “Phi-shift” DS Docta Complutense RD 4 may 2024