RT Journal Article T1 Deformations of canonical triple covers A1 Gallego Rodrigo, Francisco Javier A1 Gonzalez, M. A1 Purnaprajna, B.P. AB In this paper, we show that if X is a smooth variety of general type of dimension m≥3 for which the canonical map induces a triple cover onto Y, where Y is a projective bundle over P1 or onto a projective space or onto a quadric hypersurface, embedded by a complete linear series (except Q3 embedded in P4), then the general deformation of the canonical morphism of X is again canonical and induces a triple cover. The extremal case when Y is embedded as a variety of minimal degree is of interest, due to its appearance in numerous situations. For instance, by looking at threefolds Y of minimal degree we find components of the moduli of threefolds X of general type with KX3=3pg−9,KX3≠6, whose general members correspond to canonical triple covers. Our results are especially interesting as well because they have no lower dimensional analogues. PB Academic Press Inc. SN 0021-8693 YR 2016 FD 2016 LK https://hdl.handle.net/20.500.14352/24624 UL https://hdl.handle.net/20.500.14352/24624 LA eng NO Ministerio de Economía y Competitividad (España) NO Universidad Complutense de Madrid NO National Science Foundation DS Docta Complutense RD 17 dic 2025