RT Journal Article T1 Orthogonally additive polynomials on spaces of continuous functions A1 Villanueva Díez, Ignacio A1 Pérez García, David AB We show that, for every orthogonally additive homogeneous polynomial P on a space of continuous functions C(K) with values in a Banach space Y, there exists a linear operator S : C(K) -> Y such that P(f) = S(f(n)). This is the C(K) version of a related result of Sundaresam for polynomials on L-p spaces. PB Academic Press SN 0022-247X YR 2005 FD 2005-06-01 LK https://hdl.handle.net/20.500.14352/49451 UL https://hdl.handle.net/20.500.14352/49451 LA eng NO Pérez García, D. & Villanueva Díez, I. «Orthogonally Additive Polynomials on Spaces of Continuous Functions». Journal of Mathematical Analysis and Applications, vol. 306, n.o 1, junio de 2005, pp. 97-105. DOI.org (Crossref), https://doi.org/10.1016/j.jmaa.2004.12.036. DS Docta Complutense RD 10 abr 2025