RT Book, Section T1 Growth of titanium oxide nanorods A1 Plugaru, R A1 Cremades Rodríguez, Ana Isabel A1 Piqueras de Noriega, Javier AB Nanorods of titanium oxide (TiO_2) were obtained by thermally activated growth process carried out on pellets of nanocrystalline powder with mixed anatase and rutile structures. The nanostuctured array consists of nanorods with length between 300 min and 1 mu m and hexagonal cross section of 100-200 nm diameter. Herein it is shown that one can obtain information on the nanostructure growth from cathodoluminescence emission spectra. Vie growth process of the rods is mainly associated with the presence of the anatase phase. The keyrole of characteristic defects in semiconductor oxides, namely oxygen vacancies and Ti_(n+) ions is discussed. PB IEEE SN 0-7803-9214-0 YR 2005 FD 2005 LK https://hdl.handle.net/20.500.14352/53297 UL https://hdl.handle.net/20.500.14352/53297 LA eng NO [I] B.D. Yao, Y.F. Chan, X.Y. Zhang, W.F. Zhang, Z.Y. Yang, and N. Wang, Formation mechanism of TiO, nanotubes, Appi. Phys. Lett.82, 281-283 (2003).[2] Y. Lei, L.D. Zhang, G.W. Meng, G.H. Li, X.Y. Zhang, C.H. Liang, W. Chen and S.X. Wang, Preparation and hotoluminescence ofhigly ordered TiOQ nanowire arrays, Appl. Phys. Lett. 78, 1125-1127 (2001).[3] D. Maestre, A. Cremades, J. Piqueras, Growth and luminescence properties of micro-and nanotubes in sintered tin oxide, J. Appl. Phys. 97, 044316-1-4 (2005).[4] O.K. Varghese, D. Gong, M. Paulose, K.G. Ong, E.C. Dickey, C. A. Grimes, Extreme change in electrical resistance of titania nanotubes with hydrogen exposure, Adv. Mater. 15. 624-627 (2003).[5] O.K. Varghese, D. Gong, M. Paulose. K.G. Ong, C.A. Grimes, Hydrogen sensing using titania nanotubes, Sens. Actuators B93, 338-344 (2003).[6] R. Plugaru, A. Cremades and J. Piqueras, Effect of annealing in different atmospheres on the luminescence of polycrystalline TiO2, J. Phys.: Condens. Matter 16, S261-S268 (2004).[7] I. Fernandez, A. Cremnades, J. Piqueras, Cathodoluminescence study of defects in deformed (110) and (100) surfaces of TiO, single crystals, Semic. Sci. Technol. 20, 239-243 (2005).[8] T. Nakamura, T. Ichitsubo, E. Matsubara, A. Muramatsu, N. Sato, H. Takahashi, Acta Materialia 53, 323-329 (2005).[9] [91 O.K. Varghese, D. Gong, M. Paulouse, C.A. Grimes, E.C. Dickey, J. MFater. Res., Vol.1 8., 156-164 (2003).[10] [10] R. Sanjines, H. Tang, H. Berger. F. Gozzo. G. Margaritondo, F. Levy, Electronic structure of anatase TiO) oxide, J. Appl. Phys.75. 2945-2951 (1994). NO © 2005 IEEE.International Semiconductor Conference (2005. Sinaia, Rumania).This work was supported by MYCT of Spain (Project MAT2000-2119) R.P thanks MCYT for a research grant from the NATO scientific programme. NO MYCT of Spain NO MCYT DS Docta Complutense RD 18 may 2024