RT Journal Article T1 Geometry-induced fluctuations of olfactory searches in bounded domains A1 Duque Rodriguez, Juan A1 Gómez-Ullate Otaiza, David A1 Mejia-Monasterio, Carlos AB In olfactory search an immobile target emits chemical molecules at constant rate. The molecules are transported by the medium, which is assumed to be turbulent. Considering a searcher able to detect such chemical signals and whose motion follows the infotaxis strategy, we study the statistics of the first-passage time to the target when the searcher moves on a finite two-dimensional lattice of different geometries. Far from the target, where the concentration of chemicals is low, the direction of the searcher's first movement is determined by the geometry of the domain and the topology of the lattice, inducing strong fluctuations on the average search time with respect to the initial position of the searcher. The domain is partitioned in well-defined regions characterized by the direction of the first movement. If the search starts over the interface between two different regions, large fluctuations in the search time are observed. PB American Physical Society SN 1539-3755 YR 2014 FD 2014-04-24 LK https://hdl.handle.net/20.500.14352/34705 UL https://hdl.handle.net/20.500.14352/34705 LA eng NO © 2014 American Physical Society.This work has been supported by Grant No. 245986 of the EU project Robots Fleets for Highly Agriculture and Forestry Management. J.D.R. was also supported by a PICATA predoctoral fellowship of the Moncloa Campus of International Excellence (UCM-UPM). The research of D.G.U. has been supported in part by Spanish MINECOFEDER Grants No. MTM2012-31714 and No. FIS2012- 38949-C03- 01. We acknowledge the use of the UPC Applied Math cluster system for research computing (see http://www.ma1.upc.edu/eixam/index.html). NO EU project Robots Fleets for Highly Agriculture and Forestry Management NO PICATA predoctoral fellowship of the Moncloa Campus of International Excellence (UCM-UPM) NO Spanish MINECO-FEDER Grants DS Docta Complutense RD 11 abr 2025