RT Journal Article T1 The asymptotic values of a polynomial function on the real plane. A1 Ferrera Cuesta, Juan A1 Puente Muñoz, María Jesús De La AB Let a polynomial function f of two real variables be given. We prove the existence of a finite number of unbounded regions of the real plane along which the tangent planes to the graph of f tend to horizontal position, when moving away from the origin. The real limit values of this function on these regions are called asymptotic values. We also define the real critical values at infinity of f and prove the theorem of local trivial fibration at infinity, away from these values. PB Elsevier SN 0022-4049 YR 1996 FD 1996 LK https://hdl.handle.net/20.500.14352/57251 UL https://hdl.handle.net/20.500.14352/57251 LA eng NO D.G.I.C.Y.T. NO C.I.C.Y.T. DS Docta Complutense RD 4 sept 2025