RT Book, Section T1 Mathematical modeling for real epidemics situations. The case of classical swine fever virus A1 Ramos del Olmo, Ángel Manuel A1 Ivorra, Benjamin A1 Martínez López, Beatriz A1 Sánchez-Vizcaíno Rodríguez, José Manuel AB In this work, we describe a model to simulate the spread of withinand between- farms transmission of Classical swine fever virus (CSFV). It is a spatial hybrid model, based on the combination of a stochastic individual based model for between-farm spread with a Susceptible-Infected model for within- farm spread. An important characteristic of this model is the use, as an input, of the information available in real databases. The aim of this model is to quantify the magnitude, duration and risk zones of potential CSFV epidemics to provide support for the decision making process in future CSFV outbreaks. Model parameters and assumptions are provided and an illustration of the model’s results is performed by using available data from the Spanish region of Segovia. The outputs are also compared with those given by another model. PB Universitat de les Illes Balears SN 978-84-694-4935-6 YR 2011 FD 2011 LK https://hdl.handle.net/20.500.14352/45580 UL https://hdl.handle.net/20.500.14352/45580 LA eng NO [1] R.M. Anderson and R.M. May. Population biology of infectious diseases: Part 1. Nature, 280:361–367, 1979.[2] Junta de Castilla y Leon and Ministerio de Agricultura Pesca y Alimentacin. Expert opinion elicitation performed for foot-and-mouth disease and classical swine fever with the veterinary services. web site: http://www.jcyl.es and http://www.marm.es, 2008.[3] A.R.W. Elbers, A. Stegeman, H. Moser, H.M. Ekker, J.A. Smak, and H. Pluimers. The csf epidemic 1997-1998 in the netherlands: descriptive epidemiology. Prev. Vet. Med., 4:157–184, 1999.[4] G.F. Jenks. The data model concept in statistical mapping. International Yearbook of Cartography, 7:186–190, 1967.[5] S. Kartsen, G. Rave, and J. Krieter. Monte carlo simulation of classical swine fever epidemics and control i. general concepts and description of the model. Vet. Microbiol., 108:187–198, 2005.[6] D. Klinkenberg, J. De Bree, H. Laevens, and M.C.M. De Jong. Whithin- and betweempen transmission of csf virus: a new method to estimate the basic reproduction ration from transmission experiments. part 1. Epidemiol. Infect, 128:293–299, 2002.[7] F. Koenen, G. Van Caenegem, J.P. Vermeersch, J. Vandenheede, and H. Deluyker. Epidemiological characteristics of an outbreak of classical swine fever in an area of high pig density. Vet. Record, 139(15):367–371, 1996.[8] B. Martínez-Lopez. Desarrollo de modelos epidemiolgicos cuantitativos para el análisis del riesgo de introducción y difusón potencial de los virus de la fiebre aftosa y de la peste porcina clásica en España. PhD thesis, Universidad Complutense de Madrid, Facultad de Veterinaria, Spain, 2009.[9] B. Martínez-Lopez, B. Ivorra, A.M. Ramos, and J.M. Sánchez-Vizcaíno. A novel spatial and stochastic model to evaluate the within and between farm transmission of classical swine fever virus: 1. general concepts and description of the model. Vet. Microbiol., 147(3):300–309, 2011.[10] V. Moennig. Introduction to classical swine fever: virus, disease and control policy. Vet. Microbiol., 73(2):93–102, 2000.[11] A. Stegeman, A.R.W. Elbers, A. Bouma, and M.C.M. De Jong. Rate of inter-farm transmission of classical swine fever virus by different types of contact during the 1997-8epidemic in the netherlands. Epidemiol. Infect., 128:285–291, 2002.[12] M. Stern. InterSpread Plus User Guide. Institute of Veterinary, Animal, and Biomedical Sciences, Massey University, Palmerston North, New Zealand., 2003. NO Ministerio de Ciencia e Innovación (España) NO Banco de Santander NO Universidad Complutense DS Docta Complutense RD 15 may 2024