RT Journal Article T1 Distance Matters: Biasing Mechanism, Transfer of Asymmetry, and Stereomutation in N-Annulated Perylene Bisimide Supramolecular Polymers A1 Martínez, Manuel A. A1 Doncel Giménez, Azahara A1 Cerdá, Jesús A1 Calbo, Joaquín A1 Rodríguez, Rafael A1 Aragó, Juan A1 Crassous, Jeanne A1 Ortí, Enrique A1 Sánchez Martín, Luis AB The synthesis of two series of N-annulated perylene bisimides (PBIs), compounds 1 and 2, is reported, and their selfassembling features are thoroughly investigated by a complete set of spectroscopic measurements and theoretical calculations. The study corroborates the enormous influence that the distance between the PBI core and the peripheral groups exerts on the chiroptical properties and the supramolecular polymerization mechanism. Compounds 1, with the peripheral groups separated from the central PBI core by two methylenes and an ester group, form J-type supramolecular polymers in a cooperative manner but exhibit negligible chiroptical properties. The lack of clear helicity, due to the staircase arrangement of the self-assembling units in the aggregate, justifies these features. In contrast, attaching the peripheral groups directly to the N-annulated PBI core drastically changes the self-assembling properties of compounds 2, which form H-type aggregates following an isodesmic mechanism. These Htype aggregates show a strong aggregation-caused quenching (ACQ) effect that leads to nonemissive aggregates. Chiral (S)-2 and (R)-2 experience an efficient transfer of asymmetry to afford P- and M-type aggregates, respectively, although no amplification of asymmetry is achieved in majority rules or “sergeants-and-soldiers” experiments. A solvent-controlled stereomutation is observed for chiral (S)-2 and (R)-2, which form helical supramolecular polymers of different handedness depending on the solvent (methylcyclohexane or toluene). The stereomutation is accounted for by considering the two possible conformations of the terminal phenyl groups, eclipsed or staggered, which lead to linear or helical self-assemblies, respectively, with different relative stabilities depending on the solvent. PB ACS Publications SN 0002-7863 YR 2021 FD 2021-08-11 LK https://hdl.handle.net/20.500.14352/4598 UL https://hdl.handle.net/20.500.14352/4598 LA eng NO CRUE-CSIC (Acuerdos Transformativos 2021) NO Ministerio de Ciencia e Innovación (MICINN)/FEDER NO Ministerio de Ciencia e Innovación (MICINN) NO Unidad de Excelencia María de Maeztu NO Comunidad de Madrid NO Generalitat Valenciana DS Docta Complutense RD 30 abr 2024