RT Journal Article T1 Groups, information theory, and Einstein's likelihood principle A1 Sicuro, Gabriele A1 Tempesta, Piergiulio AB We propose a unifying picture where the notion of generalized entropy is related to information theory by means of a group-theoretical approach. The group structure comes from the requirement that an entropy be well defined with respect to the composition of independent systems, in the context of a recently proposed generalization of the Shannon-Khinchin axioms. We associate to each member of a large class of entropies a generalized information measure, satisfying the additivity property on a set of independent systems as a consequence of the underlying group law. At the same time, we also show that Einstein's likelihood function naturally emerges as a byproduct of our informational interpretation of (generally nonadditive) entropies. These results confirm the adequacy of composable entropies both in physical and social science contexts. PB American Physical Society SN 1539-3755 YR 2016 FD 2016-04-06 LK https://hdl.handle.net/20.500.14352/24471 UL https://hdl.handle.net/20.500.14352/24471 LA eng NO 1. C. Shannon, Bell Syst. Tech. J. 27, 379 (1948).2. A. Khinchin, Mathematical Foundations of Information Theory (Dover, New York, 1957).3. E. T. Jaynes, Phys. Rev. 106, 620 (1957).4. A. Rényi, in Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1: Contributions to the Theory of Statistics, edited by J. Neyman (University of California, Berkeley, 1961), p. 547.5. A.Rényi, Probability Theory (North-Holland, Amsterdam, 1970).6. J. Havrda and F. Charvát, Kybernetika 3, 30 (1967).7. A. Tsallis, J. Stat. Phys. 52, 479 (1988).8. E. P. Borges and I. Roditi, Phys. Lett. A 246, 399 (1998).9. N. Canosa and R. Rossignoli, Phys. Rev. Lett. 88, 170401 (2002).10. B. Beck and E. Cohen, Phys. Stat. Mech. Appl. 322, 267 (2003).11. R. Hanel, S. Thurner, and M. Gell-Mann, Proc. Natl. Acad. Sci. USA 108, 6390 (2011).12. P. Tempesta, Phys. Rev. E 84, 021121 (2011).13. B. Tsallis and L. J. Cirto, Eur. Phys. J. C 73, 1 (2013).14. P. Jizba and T. Arimitsu, Ann. Phys. (NY) 312, 17 (2004).15. P. Calabrese and J. Cardy, J. Phys. A: Math. Theor. 42, 504005 (2009).16. A. Coser, E. Tonni, and P. Calabrese, J. Stat. Mech.: Theory Exp. (2014) P12017.17. P. Calabrese, F. H. Essler, M. Andreas et al., J. Stat. Mech.: Theory Exp. (2014) P09025.18. P. Calabrese, P. Le Doussal, and S. N. Majumdar, Phys. Rev. A 91, 012303 (2015).19. D. Cohen, Phys. Stat. Mech. Appl. 305, 19 (2002).20. A. Einstein, Ann. Phys. (NY) 338, 1275 (1910).21. M. Mézard and G. Parisi, J. Stat. Phys. 111, 1 (2003).22. V. Bapst, L. Foini, F. Krzakala, G. Semerjian, and F. Zamponi, Phys. Rep. 523, 127 (2013).23. C. Tsallis and H. J. Haubold, Europhys. Lett. 110, 30005 (2015).24. S. Abe, C. Beck, and E. G. D. Cohen, Phys. Rev. E 76, 031102 (2007).25. P. Tempesta, Ann. Phys. (NY) 365, 180 (2016).26. P. Tempesta, arXiv:1507.07436.27. H. Touchette, Phys. Stat. Mech. Appl. 305, 84 (2002).28. R. Hanel and S. Thurner, Europhys. Lett. 96, 50003 (2011).29. H. Bergeron, E. Curado, J. Gazeau, and L. M. Rodrigues, Phys. Stat. Mech. Appl. 441, 23 (2016).30. M. Berta, M. Christandl, R. Colbeck, J. M. Renes, and R. Renner, Nat. Phys. 6, 659 (2010).31. C. Tsallis, Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World (Springer, New York, 2009).32. C. Beck, Contemp. Phys. 50, 495 (2009).33. M. Hazewinkel, Formal Groups and Applications, Vol. 78 (Elsevier, New York, 1978).34. S. Bochner, Ann. Math. 47, 192 (1946).35. A. Kolmogorov, in Atti della Reale Accademia Nazionale dei Lincei. Memorie della Classe di scienze fisiche, matematiche e naturali, Vol. 12 (R. Accademia Nazionale dei Lincei, Rome, 1930), p. 388.36. M. Nagumo, in Japanese Journal of Mathematics: Transactions and Abstracts, Vol. 7 (Mathematical Society of Japan, Tokyo, 1930) p. 71.37. C. Tsallis, Phys. Rev. E 58, 1442 (1998). NO ©2016 American Physical Society.We thank Francesco Toppan and Constantino Tsallis for useful discussions. G.S. acknowledges the financial support of the John Templeton Foundation. The research of P.T. has been partly supported by the project FIS2015-63966, MINECO, Spain, and by the ICMAT Severo Ochoa project SEV-2015-0554 (MINECO). NO John Templeton Foundation NO Ministerio de Economía y Competitividad (MINECO) NO Instituto de Ciencias Matemáticas (ICMAT), CSIC NO Consejo Superior de Investigaciones Científicas (CSIC) NO Proyecto Severo Ochoa (MINECO - ICMAT) DS Docta Complutense RD 8 may 2024