RT Journal Article T1 Organic and Inorganic PCL-Based Electrospun Fibers A1 Leonés, Adrián A1 Mujica García, Alicia A1 Arrieta Dillon, Marina Patricia A1 Salaris, Valentina A1 Lopez, Daniel A1 Kenny, José Maria A1 Peponi, Laura AB In this work, different nanocomposite electrospun fiber mats were obtained based on poly(e-caprolactone) (PCL) and reinforced with both organic and inorganic nanoparticles. In particular, on one side, cellulose nanocrystals (CNC) were synthesized and functionalized by “grafting from” reaction, using their superficial OH– group to graft PCL chains. On the other side, commercial chitosan, graphene as organic, while silver, hydroxyapatite, and fumed silica nanoparticles were used as inorganic reinforcements. All the nanoparticles were added at 1 wt% with respect to the PCL polymeric matrix in order to compare the different behavior of the woven no-woven nanocomposite electrospun fibers with a fixed amount of both organic and inorganic nanoparticles. From the thermal point of view, no difference was found between the effect of the addition of organic or inorganic nanoparticles, with no significant variation in the Tg (glass transition temperature), Tm (melting temperature), and the degree of crystallinity, leading in all cases to high crystallinity electrospun mats. From the mechanical point of view, the highest values of Young modulus were obtained when graphene, CNC, and silver nanoparticles were added to the PCL electrospun fibers. Moreover, all the nanoparticles used, both organic and inorganic, increased the flexibility of the electrospun mats, increasing their elongation at break. PB MDPI SN 2073-4360 YR 2020 FD 2020-06-10 LK https://hdl.handle.net/20.500.14352/8400 UL https://hdl.handle.net/20.500.14352/8400 LA eng NO Ministerio de Economía y Competitividad (MINECO)/FEDER NO Ministerio de Economía y Competitividad (MINECO) DS Docta Complutense RD 7 abr 2025