RT Journal Article T1 General geronimus perturbations for mixed multiple orthogonal polynomials A1 Mañas Baena, Manuel Enrique A1 Rojas Gómez, Miguel Ángel AB General Geronimus transformations, defined by regular matrix polynomials that are neither required to be monic nor restricted by the rank of their leading coefficients, are applied through both right and left multiplication to a rectangular matrix of measures associated with mixed multiple orthogonal polynomials. These transformations produce Christoffel-type formulas that establish relationships between the perturbed and original polynomials. Moreover, it is proven that the existence of Geronimus-perturbed orthogonality is equivalent to the non-cancellation of certain τ -determinants. The effect of these transformations on the Markov-Stieltjes matrix functions is also determined. As a case study, we examine the Jacobi–Piñeiro orthogonal polynomials with three weights. PB Springer SN 1664-2368 YR 2025 FD 2025-04-05 LK https://hdl.handle.net/20.500.14352/124486 UL https://hdl.handle.net/20.500.14352/124486 LA eng NO Mañas, M., Rojas, M. General geronimus perturbations for mixed multiple orthogonal polynomials. Anal.Math.Phys. 15, 50 (2025). https://doi.org/10.1007/s13324-025-01036-y NO 2025 Acuerdos Transformativos CRUE-CSIC NO Ministerio de Ciencia, Innovación y Universidades (España) NO Agencia Estatal de Investigación (España) NO European Commission DS Docta Complutense RD 17 dic 2025