%0 Journal Article %A Montesinos Amilibia, José María %T On integral quadratic forms having commensurable groups of automorphisms %D 2013 %@ 0018-2079 %U https://hdl.handle.net/20.500.14352/44490 %X We introduce two notions of equivalence for rational quadratic forms. Two n-ary rational quadratic forms are commensurable if they possess commensurable groups of automorphisms up to isometry. Two n-ary rational quadratic forms F and G are projectivelly equivalent if there are nonzero rational numbers r and s such that rF and sG are rationally equivalent. It is shown that if F\ and G\ have Sylvester signature {−,+,+,...,+} then F\ and G\ are commensurable if and only if they are projectivelly equivalent. The main objective of this paper is to obtain a complete system of (computable) numerical invariants of rational n-ary quadratic forms up to projective equivalence. These invariants are a variation of Conway's p-excesses. Here the cases n odd and n even are surprisingly different. The paper ends with some examples %~