%0 Journal Article %A Vitale, Stefania %A Partida Hanon, Angelica %A Serrano, Soraya %A Martínez Del Pozo, Álvaro %A Di Pietro, Antonio %A Turrà, David %A Bruix, Marta %T Structure-activity relationship of α mating pheromone from the fungal pathogen Fusarium oxysporum %D 2017 %@ 1083-351X %U https://hdl.handle.net/20.500.14352/17659 %X During sexual development, ascomycete fungi produce two types of peptide pheromones termed a and α. The α pheromone from the budding yeast Saccharomyces cerevisiae, a thirteen residue peptide which elicits cell cycle arrest and chemotropic growth, has served as paradigm for the interaction of small peptides with their cognate G protein-coupled receptors (GPCRs). However, no structural information is currently available for α pheromones from filamentous ascomycetes, which are significantly shorter and share almost no sequence similarity with the S. cerevisiae homolog. High-resolution structure of synthetic α-pheromone from the plant pathogenic ascomycete Fusarium oxysporum revealed the presence of a central β-turn resembling that of its yeast counterpart. Disruption of the fold by Dalanine substitution of the conserved central Gly6-Gln7 residues or by random sequence scrambling demonstrated a crucial role for this structural determinant in chemoattractant activity. Unexpectedly, the growth inhibitory effect of F. oxysporum α-pheromone was independent of the cognate GPCR Ste2 and of the central β-turn but instead required two conserved Trp1-Cys2 residues at the N-terminus. These results indicate that, in spite of their reduced size, fungal α-pheromones contain discrete functional regions with a defined secondary structure that regulate diverse biological processes such as polarity reorientation and cell division. %~