RT Journal Article T1 Growth and characterization of mn doped SnO_2 nanowires, nanobelts, and microplates A1 Herrera, Manuel A1 Maestre Varea, David A1 Cremades Rodríguez, Ana Isabel A1 Piqueras De Noriega, Francisco Javier AB Undoped and Mn doped SnO_2 nanowires, nanobelts, and microplates have been grown by a thermal evaporation method that enables the morphology and the Mn content in the structures to be controlled. The structural and morphological characterization was carried out by scanning and transmission electron microscopy (SEM and TEM) and electron backscattered diffraction (EBSD). A crystallographic model has been proposed to describe the SnO2:Mn microplates. X-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS) demonstrated the incorporation of Mn into the SnO2 lattice in concentrations up to 1.6 at % depending on the thermal treatment employed for the growth of the structures. Variations in the luminescence of the doped nanostructures as a function of the Mn content have been studied. A correlation between facets of the SnO_2:Mn microplates, identified by EBSD, with higher Mn content, and the increase of the luminescence emissions associated to, oxygen vacancies related defects was demonstrated. PB Amer Chemical Soc SN 1932-7447 YR 2013 FD 2013-05-02 LK https://hdl.handle.net/20.500.14352/33401 UL https://hdl.handle.net/20.500.14352/33401 LA eng NO © 2013 American Chemical Society.This work was supported by MICINN (Projects MAT-2009-07882, MAT-2012-31959, and CSD-2009-00013). M.H. is thankful for the financial support from PASPA-UNAM and Conacyt 102519 project. We thank M. Amatti and L. Gregoratti for their help during the XPS measurements. NO MICINN NO PASPA-UNAM NO Conacyt DS Docta Complutense RD 9 abr 2025