RT Journal Article T1 Regular left-orders on groups A1 Antolín Pichel, Yago A1 Rivas, Cristóbal A1 Lu Su, Hang AB A regular left-order on finitely generated group a group G is a total, left-multiplication invariant order on G whose corresponding positive cone is the image of a regular language over the generating set of the group under the evaluation map. We show that admitting regular left-orders is stable under extensions and wreath products and give a classification of the groups all whose left-orders are regular left-orders. In addition, we prove that solvable Baumslag-Solitar groups B(1, n) admits a regular left-order if and only if n ≥ −1. Finally, Hermiller and Sunic showed that no free product admits a regular left-order, however we show that if A and B are groups with regular left-orders, then (A ∗ B) × Z admits a regular left-order. YR 2021 FD 2021-04-12 LK https://hdl.handle.net/20.500.14352/7213 UL https://hdl.handle.net/20.500.14352/7213 LA eng NO Unión Europea. Horizonte 2020 NO Ministerio de Economía y Competitividad (MINECO) NO Ministerio de Ciencia e Innovación (MICINN) NO Centro de Excelencia Severo Ochoa NO Fundación "La Caixa" NO Gobierno de Chile DS Docta Complutense RD 11 abr 2025