RT Journal Article T1 Finite extinction and null controllability via delayed feedback non-local actions A1 Díaz Díaz, Jesús Ildefonso A1 Casal, A.C. A1 Vegas Montaner, José Manuel AB We give sufficient conditions to have the finite extinction for all solutions of linear parabolic reaction-diffusion equations of the type partial derivative u/partial derivative t - Lambda u = -M(t)u(t - tau, x) (1) with a delay term tau > 0, on Omega, an open set of R(N), M(t) is a bounded linear map on L(p)(Omega), u(t, x) satisfies a homogeneous Neumann or Dirichlet boundary condition. We apply this result to obtain distributed null controllability of the linear heat equation u(t) - Delta u = upsilon(t, x) by means of the delayed feedback term upsilon(t, x) = -M(t)u(t - tau, x). PB Pergamon-Elsevier Science SN 0362-546X YR 2009 FD 2009-12-15 LK https://hdl.handle.net/20.500.14352/42156 UL https://hdl.handle.net/20.500.14352/42156 LA eng NO DGISGPI (Spain) DS Docta Complutense RD 7 abr 2025