RT Journal Article T1 Assessment of new methods for incorporating contextual variables into efficiency measures: a Monte Carlo simulation A1 Cordero Ferrera, José Manuel A1 Polo Fernández, Cristina A1 Santín González, Daniel AB The treatment of the contextual variables (Z) has been one of the most controversial topics in the literature on efciency measurement. Over the last three decades of research, diferent methods have been developed to incorporate the efect of such variables in the estimation of efciency measures. However, it is unclear which alternative provides more accurate estimations. The aim of this work is to assess the performance of two recently developed estimators, namely the nonparametric conditional DEA method (Daraio and Simar in J Prod Anal 24(1):93–121, 2005; J Prod Anal 28:13–32, 2007a) and the StoNEZD (Stochastic Non-Smooth Envelopment of Z-variables Data) approach (Johnson and Kuosmanen in J Prod Anal 36(2):219–230, 2011). To do this, we conduct a Monte Carlo experiment using three diferent data generation processes to test how each model performs under diferent circumstances. Our results show that the StoNEZD approach outperforms conditional DEA in all the evaluated scenarios. PB Springer Nature SN 1109-2858 YR 2018 FD 2018 LK https://hdl.handle.net/20.500.14352/12313 UL https://hdl.handle.net/20.500.14352/12313 LA eng NO Ministerio de Economía y Competitividad (MINECO) NO Gobierno de Extremadura DS Docta Complutense RD 4 abr 2025