RT Journal Article T1 Molecular clouds in the Cosmic Snake normal star-forming galaxy 8 billion years ago A1 Pérez González, Pablo Guillermo AB The cold molecular gas in contemporary galaxies is structured in discrete cloud complexes. These giant molecular clouds (GMCs), with 10^(4) –10^(7) solar masses (M⊙) and radii of 5–100 parsecs, are the seeds of star formation1 . Highlighting the molecular gas structure at such small scales in distant galaxies is observationally challenging. Only a handful of molecular clouds were reported in two extreme submillimetre galaxies at high redshift(2-4) . Here we search for GMCs in a typical Milky Way progenitor at z=1.036. Using the Atacama Large Millimeter/submillimeter Array (ALMA), we mapped the CO(4–3) emission of this gravitationally lensed galaxy at high resolution, reading down to 30 parsecs, which is comparable to the resolution of CO observations of nearby galaxies(5). We identify 17 molecular clouds, characterized by masses, surface densities and supersonic turbulence all of which are 10–100 times higher than present-day analogues. These properties question the universality of GMCs(6) and suggest that GMCs inherit their properties from ambient interstellar medium. The measured cloud gas masses are similar to the masses of stellar clumps seen in the galaxy in comparable numbers(7) . This corroborates the formation of molecular clouds by fragmentation of distant turbulent galactic gas disks(8,9), which then turn into stellar clumps ubiquitously observed in galaxies at ‘cosmic noon’ (ref. 10). PB Nature Publishing Group SN 2397-3366 YR 2019 FD 2019-12 LK https://hdl.handle.net/20.500.14352/6056 UL https://hdl.handle.net/20.500.14352/6056 LA eng NO 1. Bolatto, A. D., Leroy, A. K., Rosolowsky, E., Walter,F. & Blitz, L. The resolved properties of extragalacticgiant molecular clouds. Astrophys. J. 686, 948–965(2008).2. Swinbank, A. M. et al. ALMA resolves the propertiesof star-forming regions in a dense gas disk at z ~ 3.Astrophys. J. 806, L17–L22 (2015).3. Sharda, P., Federrath, C., da Cunha, E., Swinbank,A. M. & Dye, S. Testing star formation laws in astarburst galaxy at redshift 3 resolved with ALMA.Mon. Not. R. Astron. Soc. 477, 4380–4390 (2018).4. Tadaki, K. et al. The gravitationally unstable gas diskof a starburst galaxy 12 billion years ago. Nature 560,613–616 (2018).5. Sun, J. et al. Cloud-scale molecular gas properties in15 nearby galaxies. Astrophys. J. 860, 172–211 (2018).6. Hughes, A. et al. A comparative study of giantmolecular clouds in M51, M33, and the LargeMagellanic Cloud. Astrophys. J. 779, 46–66 (2013).7. Cava, A. et al. The nature of giant clumps in distantgalaxies probed by the anatomy of the Cosmic Snake.Nat. Astron. 2, 76–82 (2018)given molecular cloud by the hydrostatic pressure at thedisk midplane for a two-component disk of gas and stars45:ÉYçnÑ = é2 G Σ89: ;Σ89: +%89:%:n9Q:Σ:n9Q:G cmlOKwhere Σ89:, Σ:n9Q:, and %89:, %:n9Q: are the surfacedensities and velocity dispersions of the gas and stars,respectively. We considered the molecular gas phase as thedominant phase of the neutral (atomic + molecular) gas inthis z≃1 galaxy. We derived surface densities from themolecular gas and stellar masses contained within theobserved gas disk of 1.7kpc in galactocentric radius, andassumed the velocity dispersions of gas and stars to becomparable. We obtained the hydrostatic pressure of~107.7 cm−3K in the Cosmic Snake galaxy.Data availabilityThe ALMA raw data of the Cosmic Snake arc are availablethrough the ALMA archive under the project identification2013.1.01330.S. The HST images of MACS J1206.2–0847are part of the CLASH, available athttps://archive.stsci.edu/prepds/clash/. The data thatsupport the plots within this paper and other findings ofthis study are available from the corresponding authorupon reasonable request.Code availabilityThe reduction of the ALMA data was performed with theCASA pipeline version 4.2.2, available athttps://almascience.eso.org/processing/science-pipeline.The PdBI data were reduced using GILDAS software,available at http://www.iram.fr/IRAMFR/GILDAS. Thelens model was obtained using Lenstool, publicly availableat https://projets.lam.fr/projects/lenstool/wiki. The spectralenergy distribution fitting was performed with a modifiedversion of the Hyperz code, available in its original form athttps://ascl.net/1108.010.References1. Bolatto, A. D., Leroy, A. K., Rosolowsky, E., Walter,F. & Blitz, L. The resolved properties of extragalacticgiant molecular clouds. Astrophys. J. 686, 948–965(2008).2. Swinbank, A. M. et al. ALMA resolves the propertiesof star-forming regions in a dense gas disk at z ~ 3.Astrophys. J. 806, L17–L22 (2015).3. Sharda, P., Federrath, C., da Cunha, E., Swinbank,A. M. & Dye, S. Testing star formation laws in astarburst galaxy at redshift 3 resolved with ALMA.Mon. Not. R. Astron. Soc. 477, 4380–4390 (2018).4. Tadaki, K. et al. The gravitationally unstable gas diskof a starburst galaxy 12 billion years ago. Nature 560,613–616 (2018).5. Sun, J. et al. Cloud-scale molecular gas properties in15 nearby galaxies. Astrophys. J. 860, 172–211 (2018).6. Hughes, A. et al. A comparative study of giantmolecular clouds in M51, M33, and the LargeMagellanic Cloud. Astrophys. J. 779, 46–66 (2013).7. Cava, A. et al. The nature of giant clumps in distantgalaxies probed by the anatomy of the Cosmic Snake.Nat. Astron. 2, 76–82 (2018).108. Tamburello, V., Mayer, L., Shen, S. & Wadsley,J. A lower fragmentation mass scale in high-redshiftgalaxies and its implications on giant clumps: asystematic numerical study. Mon. Not. R. Astron. Soc.453, 2490–2514 (2015).9. Mandelker, N. et al. Giant clumps in simulatedhigh-z galaxies: properties, evolution and dependenceon feedback. Mon. Not. R. Astron. Soc. 464, 635–665(2017).10. Guo, Y. et al. Clumpy galaxies in CANDELS. I.The definition of UV clumps and the fraction ofclumpy galaxies at 0.5 < z < 3. Astrophys. J. 800, 39–60(2015).11. Behroozi, P. S., Wechsler, R. H. & Conroy, C. Theaverage star formation histories of galaxies in darkmatter halos from z = 0–8. Astrophys. J. 770, 57–93(2013).12. Rodighiero, G. et al. The lesser role of starbursts in starformation at z = 2. Astrophys. J. 739, L40–L46 (2011).13. Patrício, V. et al. Kinematics, turbulence, and starformation of z ~ 1 strongly lensed galaxies seen withMUSE. Mon. Not. R. Astron. Soc. 477, 18–44 (2018).14. Wisnioski, E. et al. The KMOS3D survey: design, firstresults, and the evolution of galaxy kinematics from0.7 ≤ z ≤ 2.7. Astrophys. J. 799, 209–236 (2015).15. Dekel, A. et al. Cold streams in early massive hothaloes as the main mode of galaxy formation. Nature457, 451–454 (2009).16. Ebeling, H. et al. A spectacular giant arc in the massivecluster lens MACS J1206.2-0847. Mon. Not. R. Astron.Soc. 395, 1213–1224 (2009).17. Heyer, M., Krawczyk, C., Duval, J. & Jackson, J. M.Re-examining Larson’s scaling relationships in galacticmolecular clouds. Astrophys. J. 699, 1092–1103(2009).18. Donovan Meyer, J. et al. Resolved giant molecularclouds in nearby spiral galaxies: insights from theCANON CO(1–0) survey. Astrophys. J. 772, 107–123(2013).19. Colombo, D. et al. The PdBI Arcsecond WhirlpoolSurvey (PAWS): environmental dependence of giantmolecular cloud properties in M51. Astrophys. J. 784,3–35 (2014).20. Corbelli, E. et al. From molecules to young stellarclusters: the star formation cycle across the disk ofM33. Astron. Astrophys. 601, 146–164 (2017).21. Larson, R. B. Turbulence and star formation inmolecular clouds. Mon. Not. R. Astron. Soc. 194,809–826 (1981).22. Wei, L. H., Keto, E. & Ho, L. C. Two populations ofmolecular clouds in the Antennae galaxies. Astrophys.J. 750, 136–154 (2012).23. Leroy, A. K. et al. ALMA reveals the molecularmedium fueling the nearest nuclear starburst.Astrophys. J. 801, 25–53 (2015).24. Bolatto, A. D., Wolfire, M. & Leroy, A. K. TheCO-to-H2 conversion factor. Annu. Rev. Astron.Astrophys. 51, 207–268 (2013).25. McKee, C. F. & Ostriker, E. C. Theory of starformation. Annu. Rev. Astron. Astrophys. 45, 565–687(2007).26. Brunt, C. M., Heyer, M. H. & Mac Low, M.-M.Turbulent driving scales in molecular clouds. Astron.Astrophys. 504, 883–890 (2009).27. Evans, N. J. II et al. The Spitzer c2d legacy results:star-formation rates and efficiencies; evolution andlifetimes. Astrophys. J. Suppl. 181, 321–350 (2009).28. Grudić, M. Y. et al. When feedback fails: the scalingand saturation of star formation efficiency. Mon. Not.R. Astron. Soc. 475, 3511–3528 (2018).29. Kruijssen, J. M. D. et al. What controls star formationin the central 500 pc of the Galaxy? Mon. Not. R.Astron. Soc. 440, 3370–3391 (2014).30. Renaud, F., Boily, C. M., Fleck, J.-J., Naab, T. &Theis, Ch. Star cluster survival and compressive tidesin Antennae-like mergers. Mon. Not. R. Astron. Soc.391, L98–L102 (2008).31. Jullo, E. et al. A Bayesian approach to strong lensingmodelling of galaxy clusters. New J. Phys. 9, 447(2007).32. McMullin, J. P., Waters, B., Schiebel, D., Young, W.& Golap, K. in Astronomical Data Analysis Softwareand Systems XVI, Vol. 376 (eds. Shaw, R. A. et al.) 127(Astronomical Society of the Pacific, 2007).33. Daddi, E. et al. CO excitation of normal star-forminggalaxies out to z = 1.5 as regulated by the properties oftheir interstellar medium. Astron. Astrophys. 577,A46–A65 (2015).34. Walter, F. et al. ALMA Spectroscopic Survey in theHubble Ultra Deep Field: survey description.Astrophys. J. 833, 67–82 (2016).35. Hodge, J. A. et al. Kiloparsec-scale dust disks in highredshift luminous submillimeter galaxies. Astrophys. J.833, 103–118 (2016).36. Solomon, P. M., Downes, D., Radford, S. J. E. &Barrett, J. W. The molecular interstellar medium inultraluminous infrared galaxies. Astrophys. J. 478,144–161 (1997).37. Solomon, P. M., Rivolo, A. R., Barrett, J. & Yahil, A.Mass, luminosity, and line width relations of Galacticmolecular clouds. Astrophys. J. 319, 730–741 (1987).38. Postman, M. et al. The cluster lensing and supernovasurvey with Hubble: an overview. Astrophys. J. Suppl.Ser. 199, 25–47 (2012).39. Schaerer, D. & de Barros, S. On the physical propertiesof z ~ 6–8 galaxies. Astron. Astrophys. 515, A73–A88(2010).40. Schaerer, D., de Barros, S. & Sklias, P. Properties ofz ~ 3–6 Lyman break galaxies. I. Testing star formationhistories and the SFR–mass relation with ALMA andnear-IR spectroscopy. Astron. Astrophys. 549, A4–A24(2013).41. Sklias, P. et al. Star formation histories, extinction, anddust properties of strongly lensed z ~ 1.5–3 starforming galaxies from the Herschel Lensing Survey.Astron. Astrophys. 561, A149–A176 (2014).42. Bruzual, G. & Charlot, S. Stellar population synthesisat the resolution of 2003. Mon. Not. R. Astron. Soc.344, 1000–1028 (2003).43. Salpeter, E. E. The luminosity function and stellarevolution. Astrophys. J. 121, 161–167 (1955).44. Elmegreen, B. G. Theory of starbursts in nuclear rings.Rev. Mex. Astron. Astrofis. Conf. Ser. 6, 165 (1997).45. Elmegreen, B. G. Molecular cloud formation bygravitational instabilities in a clumpy interstellarmedium. Astrophys. J. 344, 306–310 (1989). NO © The Autors, 2019. Artículo firmado por 15 autores. The work of M.D.-Z., D.S., L.M. and A.C. was supported by the STARFORM Sinergia Project funded by the Swiss National Science Foundation. J.R. acknowledges support from the European Research Council starting grant 336736-CALENDS. W.R. is supported by the Thailand Research Fund/Office of the Higher Education Commission Grant Number MRG6280259 and Chulalongkorn University’s CUniverse. P.G.P.-G. acknowledges support from the Spanish Government grant AYA2015-63650-P. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2013.1.01330.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), MOST and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. We also used PdBI observations. PdBI is run by the Institut de Radioastronomie Millimétrique (IRAM, France), a partnership of the French CNRS, the German MPG and the Spanish IGN. Part of the analysis presented herein is also based on observations made with the NASA/ESA Hubble Space Telescope, and obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA) and the Canadian Astronomy Data Centre (CADC/NRC/CSA). We thank E. Chapillon from the ALMA Regional Center node of IRAM for her help and training on the reduction of the ALMA data, V. Patricio for sharing the kinematic analysis of the [OII] emission of the Cosmic Snake galaxy and C. Georgy for the presentation of the VisIt 3D visualization tool. NO Unión Europea. FP7 NO Ministerio de Economía y Competitividad (MINECO) NO Swiss National Science Foundation NO Thailand Research Fund/Office of the Higher Education Commission NO Chulalongkorn University’s CUniverse NO NSF (USA) NO NINS (Japan) NO NRC (Canada) NO MOST and ASIAA (Taiwan) NO KASI (Republic of Korea) NO Republic of Chile NO Institut de Radioastronomie Millimétrique (IRAM, France) NO French CNRS NO German MPG NO Spanish IGN DS Docta Complutense RD 28 abr 2024