RT Journal Article T1 Nuclear embeddings of Besov spaces into Zygmund spaces A1 Cobos Díaz, Fernando A1 Edmunds, David E. A1 Kühn, Tomas AB Let d ∈ N and let Ω be a bounded Lipschitz domain in Rd. We prove that the embedding Id : Bd (Ω) −→ L (log L) (Ω) is nuclear if a < −1 and 1 ≤ p, q ≤ ∞,p,q ≤∞, while if −1 < a < 0, 2 < p < ∞ and p ≤ q ≤ ∞ while if −1 < a < 0, 2 < p < ∞ and p ≤ q ≤ ∞ the embedding Id fails to be nuclear. Furthermore, if a = −1, the embedding Id : Bd∞,∞(Ω) −→ L∞ (log L)−1 (Ω) is not nuclear. PB Springer SN 1069-5869 YR 2019 FD 2019 LK https://hdl.handle.net/20.500.14352/13826 UL https://hdl.handle.net/20.500.14352/13826 LA spa NO Ministerio de Ciencia, Innovación y Universidades (España)/Fondo Europeo de Desarrollo Regional DS Docta Complutense RD 30 dic 2025