TY - JOUR AU - Cobos Díaz, Fernando AU - Edmunds, David E. AU - Kühn, Tomas PY - 2019 SN - 1069-5869 UR - https://hdl.handle.net/20.500.14352/13826 T2 - Journal of Fourier analysis and applications AB - Let d ∈ N and let Ω be a bounded Lipschitz domain in Rd. We prove that the embedding Id : Bd (Ω) −→ L (log L) (Ω) is nuclear if a < −1 and 1 ≤ p, q ≤ ∞,p,q ≤∞, while if −1 < a < 0, 2 < p < ∞ and p ≤ q ≤ ∞ while if −1 < a < 0, 2 < p < ∞ and p... LA - spa PB - Springer KW - Análisis matemático KW - Espacios de Besov KW - Espacios de Zygmund KW - Besov spaces KW - Zygmund spaces KW - Nuclear embeddings TI - Nuclear embeddings of Besov spaces into Zygmund spaces TY - journal article ER -